login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073467
a(n) is the number of essentially different ways in which the integers 1,2,3,...,2n can be arranged in a circle such that (1) all pairs of adjacent integers sum to a prime number and (2) all pairs of integers opposite each other on the circle sum to a prime.
0
1, 0, 0, 0, 4, 0, 8, 0, 556, 0, 16156, 0, 4545745, 0, 1697587998, 0
OFFSET
1,5
COMMENTS
Note that a(n) = 0 for all even n because opposite numbers sum to an even number. The Mathematica program uses a backtracking algorithm to count the arrangements. To print the unique arrangements, remove the comments from around the print statement.
EXAMPLE
a(5)=4 because there are four essential different arrangements: {1,2,3,4,7,6,5,8,9,10}, {1,2,3,10,7,6,5,8,9,4}, {1,2,9,4,7,6,5,8,3,10} and {1,2,9,10,7,6,5,8,3,4}.
MATHEMATICA
maxN=9; $RecursionLimit=500; try[lev_] := Module[{t, j}, If[lev>2n, (*then make sure the sum of the first and last is prime*) If[PrimeQ[soln[[1]]+soln[[2n]]]&&soln[[2]]<=soln[[2n]], (*Print[soln]; *)cnt++ ], (*else append another number to the soln list*) t=soln[[lev-1]]; For[j=1, j<=Length[s[[t]]], j++, If[ !MemberQ[soln, s[[t]][[j]]], If[lev<=n||MemberQ[s[[soln[[lev-n]]]], s[[t]][[j]]], soln[[lev]]=s[[t]][[j]]; try[lev+1]; soln[[lev]]=0]]]]]; For[lst={}; n=1, n<=maxN, n++, s=Table[{}, {2n}]; For[i=1, i<=2n, i++, For[j=1, j<=2n, j++, If[i!=j&&PrimeQ[i+j], AppendTo[s[[i]], j]]]]; Delete[s[[1]], -1]; (* these will all be duplicates *) soln=Table[0, {2n}]; soln[[1]]=1; cnt=0; try[2]; AppendTo[lst, cnt]]; lst
CROSSREFS
Cf. A051252.
Sequence in context: A114401 A378617 A304440 * A288096 A021249 A010638
KEYWORD
hard,more,nice,nonn
AUTHOR
T. D. Noe, Aug 02 2002
EXTENSIONS
a(14)-a(16) from Bert Dobbelaere, Jun 24 2019
STATUS
approved