login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288097
Square array read by antidiagonals downwards: A(n, 1) = smallest base-prime(n) Wieferich prime and A(n, k) = smallest base-A(n, k-1) Wieferich prime for k > 1.
2
1093, 2, 11, 1093, 71, 2, 2, 3, 1093, 5, 1093, 11, 2, 2, 71, 2, 71, 1093, 1093, 3, 2, 1093, 3, 2, 2, 11, 1093, 2, 2, 11, 1093, 1093, 71, 2, 1093, 3, 1093, 71, 2, 2, 3, 1093, 2, 11, 13, 2, 3, 1093, 1093, 11, 2, 1093, 71, 2, 2, 1093, 11, 2, 2, 71, 1093, 2, 3, 1093, 1093, 7
OFFSET
1,1
EXAMPLE
Array starts
1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2
11, 71, 3, 11, 71, 3, 11, 71, 3, 11
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
5, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2
71, 3, 11, 71, 3, 11, 71, 3, 11, 71
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
3, 11, 71, 3, 11, 71, 3, 11, 71, 3
13, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
MATHEMATICA
f[n_] := Block[{p = 2}, While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p]; T[n_, k_] := T[n, k] = If[k == 1, f@ Prime@ n, f@ T[n, k - 1]]; Table[Function[n, T[n, k]][m - k + 1], {m, 12}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, Jun 06 2017 *)
PROG
(PARI) a039951(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)==1, return(p)))
table(rows, cols) = forprime(p=1, prime(rows), my(i=0, w=a039951(p)); while(i < cols, print1(w, ", "); w=a039951(w); i++); print(""))
table(10, 10) \\ print initial 10 rows and 10 columns of table
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Jun 05 2017
EXTENSIONS
More terms from Michael De Vlieger, Jun 06 2017
STATUS
approved