login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258417
Number of partitions of the 3-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
2
30, 486, 5880, 64464, 679195, 7043814, 72707844, 751082244, 7785793080, 81092511276, 849060054420, 8937364804760, 94564644817767, 1005496779910572, 10740560345206680, 115218669255806304, 1240869923563291014, 13412271463669969704, 145454088924589697192
OFFSET
3,1
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 11.6335027253872064795086728699206569842475549795979388187955249065144... is the root of the equation 16777216 - 150994944*d + 1716387840*d^3 + 2063339520*d^4 - 6994944*d^5 - 21019200*d^6 + 454313*d^7 = 0 and c = 0.6170954330535517584816422123448632671500498041324155957832713069267... . - Vaclav Kotesovec, Feb 20 2016
MAPLE
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 3):
seq(a(n), n=3..25);
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 3];
a /@ Range[3, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A255982.
Sequence in context: A321045 A004416 A125487 * A212473 A127544 A133927
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 29 2015
STATUS
approved