login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258415
Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (2 + 2^(n-1)*(6*k - 3 + 2*(-1)^n))/3, n,k >= 1.
1
1, 4, 3, 2, 8, 5, 14, 10, 12, 7, 6, 30, 18, 16, 9, 54, 38, 46, 26, 20, 11, 22, 118, 70, 62, 34, 24, 13, 214, 150, 182, 102, 78, 42, 28, 15, 86, 470, 278, 246, 134, 94, 50, 32, 17, 854, 598, 726, 406, 310, 166, 110, 58, 36, 19
OFFSET
1,2
COMMENTS
The sequence is a permutation of the natural numbers.
Theorem: Let v(y) denote the 2-adic valuation of y. For x an odd natural number, let F(x) = (3*x+1)/2^v(3*x+1) (see A075677). Row n of A is the set of all natural numbers m such that v(1+F(4*(2*m-1)-3)) = n.
FORMULA
A(n,k) = (1 + A257499(n,k))/2.
EXAMPLE
Array begins:
. 1 3 5 7 9 11 13 15 17 19
. 4 8 12 16 20 24 28 32 36 40
. 2 10 18 26 34 42 50 58 66 74
. 14 30 46 62 78 94 110 126 142 158
. 6 38 70 102 134 166 198 230 262 294
. 54 118 182 246 310 374 438 502 566 630
. 22 150 278 406 534 662 790 918 1046 1174
. 214 470 726 982 1238 1494 1750 2006 2262 2518
. 86 598 1110 1622 2134 2646 3158 3670 4182 4694
. 854 1878 2902 3926 4950 5974 6998 8022 9046 10070
MATHEMATICA
(* Array: *)
Grid[Table[(2 + 2^(n - 1)*(6*k - 3 + 2*(-1)^n))/3, {n, 10}, {k, 10}]]
(* Array antidiagonals flattened: *)
Flatten[Table[(2 + 2^(n - k)*(6*k - 3 + 2*(-1)^(n - k + 1)))/3, {n, 10}, {k, n}]]
CROSSREFS
Cf. A005408, A008586, A017089 (rows 1-3).
Sequence in context: A067016 A022295 A371510 * A132668 A018866 A021235
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, May 29 2015
STATUS
approved