login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258412
Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^k dx.
0
2, 9, 8, 7, 8, 3, 3, 6, 5, 1, 0, 6, 5, 6, 7, 2, 9, 8, 7, 7, 0, 9, 5, 3, 7, 7, 2, 1, 1, 4, 0, 0, 7, 0, 9, 7, 3, 6, 0, 9, 2, 1, 8, 2, 5, 2, 5, 0, 1, 4, 7, 4, 3, 3, 4, 9, 0, 4, 5, 1, 1, 7, 4, 9, 9, 1, 7, 8, 0, 5, 0, 0, 4, 8, 9, 6, 7, 4, 3, 5, 2, 2, 0, 5, 8, 1, 0, 5, 0, 9, 8, 7, 2, 2, 4, 0, 2, 6, 3, 5, 0, 7, 6, 1, 6, 4
OFFSET
0,1
COMMENTS
Integral_{x=0..1} Product_{k=1..n} (1+x^k)^k dx ~ 3*2^(n*(n+1)/2 + 1)/n^3.
Integral_{x=0..1} Product_{k=1..n} (1+x^k) dx ~ 2^(n+2)/n^2.
Integral_{x=0..1} Product_{k>=1} (1-x^k) dx = A258232 = 0.3684125359314...
Integral_{x=0..1} Product_{k=1..n} (1-x^k)^n dx ~ 1/n.
Integral_{x=0..1} Product_{k=1..n} (1+x^k)^n dx ~ 2^(n^2 + 2)/n^3.
EXAMPLE
0.298783365106567298770953772114...
CROSSREFS
Sequence in context: A077601 A090930 A346429 * A151927 A046017 A155909
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 29 2015
EXTENSIONS
More digits from Vaclav Kotesovec, Oct 10 2023
STATUS
approved