login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258413
Numbers m such that antisigma(m) contains sigma(m) as a substring.
1
34, 79, 479, 1529, 2879, 4895, 8873, 14243, 26879, 62498, 79999, 295285, 559571, 589219, 644735, 799999, 2012897, 2181600, 2233033, 2395488, 6399839, 7453541, 7922023, 8598719, 22928034, 26861727, 37894930, 55056372, 63652895, 76820471, 144726608, 174044214
OFFSET
1,1
COMMENTS
Prime numbers in the sequence: 79, 479, 2879, 14243, 26879, 79999, 559571, 589219, ...
The primes of the form 8*10^k-1, for k>0, like 79 or 79999, are terms. See A056721. - Giovanni Resta, Jun 08 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..55 (terms < 6*10^10)
EXAMPLE
sigma(34) = 54 and antisigma(34) = 34*35/2 - 54 = 541, which contains 54 as a substring;
sigma(79) = 80 and antisigma(79) = 79*80/2 - 80 = 3080, which contains 80 as a substring;
sigma(479) = 480 and antisigma(479) = 479*480/2 - 480 = 114480, which contains 480 as a substring.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, d, j, k, n;
for n from 1 to q do a:=sigma(n); c:=ilog10(a)+1; b:=n*(n+1)/2-sigma(n); d:=ilog10(b)+1; for k from 0 to d-c do j:=trunc(b/10^k);
if a=j-trunc(j/10^c)*10^c then print(n); break; fi; od; od; end: P(10^9);
MATHEMATICA
fQ[n_]:=StringMatchQ[ToString[n*(n+1)/2-DivisorSigma[1, n]], ___~~ToString[DivisorSigma[1, n]]~~___]; Select[Range[10^5], fQ[#]&] (* Ivan N. Ianakiev, Jun 18 2015 *)
fQ[n_]:=StringContainsQ[ToString[n*(n+1)/2-DivisorSigma[1, n]], ToString[DivisorSigma[1, n]]]; Select[Range[10^5], fQ[#]&] (* much faster *) (* Ivan N. Ianakiev, Apr 02 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, May 29 2015
EXTENSIONS
a(16)-a(32) from Giovanni Resta, Jun 08 2015
STATUS
approved