OFFSET
0,8
COMMENTS
The g.f. given below is a generalization of formulas given by Murray R. Bremner and Sara Madariaga in A236339 and A236342. According to them A(n,k) also gives the number of distinct monomials of degree n+1 in the universal algebra with k nonassociative binary products {*1,...,*k} related only by the interchange laws from k-category theory: (a *i b) *j (c *i d) = (a *j c) *i (b *j d) for i,j in {1,...,k} and i<j.
These numbers can be regarded as (one of many possible definitions of) higher-dimensional Catalan numbers. - N. J. A. Sloane, Feb 12 2014
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], Mar 03 2019, p. 8.
FORMULA
G.f. G_k of column k satisfies: (-1)^k*x = Sum_{i=0..k} (-1)^i*C(k,i)*(G_k*x)^(2^(k-i)).
A(n,k) = Sum_{i=0..k} C(k,i) * A255982(n,i). - Alois P. Heinz, Mar 13 2015
EXAMPLE
A(3,1) = 5:
[||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].
.
A(2,2) = 8:
._______. ._______. ._______. ._______.
| | | | | | | | |_______| | |
| | | | | | | | |_______| |_______|
| | | | | | | | | | |_______|
|_|_|___| |___|_|_| |_______| |_______|
._______. ._______. ._______. ._______.
| | | | | | | | | | |
|___| | | |___| |___|___| |_______|
| | | | | | | | | | |
|___|___| |___|___| |_______| |___|___|.
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 8, 18, 32, 50, 72, ...
0, 5, 39, 132, 314, 615, 1065, ...
0, 14, 212, 1080, 3440, 8450, 17604, ...
0, 42, 1232, 9450, 40320, 124250, 311472, ...
0, 132, 7492, 86544, 494736, 1912900, 5770692, ...
MAPLE
A:= (n, k)-> coeff(series(RootOf(x*(-1)^k=add((-1)^i*
binomial(k, i)*(G*x)^(2^(k-i)), i=0..k), G), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[ Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 02 2014
STATUS
approved