login
A237018
Number A(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 39, 14, 0, 1, 5, 32, 132, 212, 42, 0, 1, 6, 50, 314, 1080, 1232, 132, 0, 1, 7, 72, 615, 3440, 9450, 7492, 429, 0, 1, 8, 98, 1065, 8450, 40320, 86544, 47082, 1430, 0, 1, 9, 128, 1694, 17604, 124250, 494736, 819154, 303336, 4862, 0
OFFSET
0,8
COMMENTS
The g.f. given below is a generalization of formulas given by Murray R. Bremner and Sara Madariaga in A236339 and A236342. According to them A(n,k) also gives the number of distinct monomials of degree n+1 in the universal algebra with k nonassociative binary products {*1,...,*k} related only by the interchange laws from k-category theory: (a *i b) *j (c *i d) = (a *j c) *i (b *j d) for i,j in {1,...,k} and i<j.
These numbers can be regarded as (one of many possible definitions of) higher-dimensional Catalan numbers. - N. J. A. Sloane, Feb 12 2014
LINKS
Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], Mar 03 2019, p. 8.
FORMULA
G.f. G_k of column k satisfies: (-1)^k*x = Sum_{i=0..k} (-1)^i*C(k,i)*(G_k*x)^(2^(k-i)).
A(n,k) = Sum_{i=0..k} C(k,i) * A255982(n,i). - Alois P. Heinz, Mar 13 2015
EXAMPLE
A(3,1) = 5:
[||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].
.
A(2,2) = 8:
._______. ._______. ._______. ._______.
| | | | | | | | |_______| | |
| | | | | | | | |_______| |_______|
| | | | | | | | | | |_______|
|_|_|___| |___|_|_| |_______| |_______|
._______. ._______. ._______. ._______.
| | | | | | | | | | |
|___| | | |___| |___|___| |_______|
| | | | | | | | | | |
|___|___| |___|___| |_______| |___|___|.
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 8, 18, 32, 50, 72, ...
0, 5, 39, 132, 314, 615, 1065, ...
0, 14, 212, 1080, 3440, 8450, 17604, ...
0, 42, 1232, 9450, 40320, 124250, 311472, ...
0, 132, 7492, 86544, 494736, 1912900, 5770692, ...
MAPLE
A:= (n, k)-> coeff(series(RootOf(x*(-1)^k=add((-1)^i*
binomial(k, i)*(G*x)^(2^(k-i)), i=0..k), G), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[ Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A000108, A236339(n+1), A236342(n+1), A237019, A237020, A237021, A237022, A237023, A237024, A237025.
Rows n=0-2 give: A000012, A001477, A001105.
Main diagonal gives A237026.
Cf. A255982.
Sequence in context: A124540 A124550 A306024 * A290605 A292913 A214776
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 02 2014
STATUS
approved