login
A237022
Number of partitions of the 7-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes.
2
1, 7, 98, 1694, 32732, 677082, 14667072, 328480502, 7544198956, 176717178176, 4205620508824, 101400381318782, 2471618555755972, 60805104853528336, 1507824418684909472, 37649597045144908852, 945799864583981705872, 23887043176751274744168
OFFSET
0,2
LINKS
Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], Mar 03 2019.
FORMULA
G.f. G satisfies: -x = Sum_{i=0..7} (-1)^i*C(7,i)*(G*x)^(2^(7-i)).
CROSSREFS
Column k=7 of A237018.
Sequence in context: A133679 A219406 A267664 * A156266 A234873 A051188
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 02 2014
STATUS
approved