%I #9 Mar 11 2019 06:43:14
%S 1,7,98,1694,32732,677082,14667072,328480502,7544198956,176717178176,
%T 4205620508824,101400381318782,2471618555755972,60805104853528336,
%U 1507824418684909472,37649597045144908852,945799864583981705872,23887043176751274744168
%N Number of partitions of the 7-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes.
%H Alois P. Heinz, <a href="/A237022/b237022.txt">Table of n, a(n) for n = 0..300</a>
%H Yu Hin (Gary) Au, Fatemeh Bagherzadeh, Murray R. Bremner, <a href="https://arxiv.org/abs/1903.00813">Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube</a>, arXiv:1903.00813 [math.CO], Mar 03 2019.
%F G.f. G satisfies: -x = Sum_{i=0..7} (-1)^i*C(7,i)*(G*x)^(2^(7-i)).
%Y Column k=7 of A237018.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Feb 02 2014