login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365342
Positions of records in A087704.
6
2, 5, 10, 82, 284, 680, 1322, 68104, 149795, 213895, 1023127, 3775307, 25396927, 36254395, 53343289, 68677522, 266888359, 366901277, 558829814, 1576699732, 8527370677, 11616255230, 16948492520, 167299409017, 222801579737, 2001199132825, 5024272986979, 7880897129684
OFFSET
1,1
COMMENTS
Numbers k such that iteration of the map x -> (5/3)*floor(x) starting at x = k takes more steps to reach an integer > k than it does for any number from 2 to k - 1.
FORMULA
A087704(a(n)) = A365343(n).
EXAMPLE
a(3) = 10 is a term because A087704(10) = 9 and A087704(k) < 9 for 2 <= k < 10.
MAPLE
g:= x -> 5/3 * floor(x):
h:= proc(n) local i, k;
k:= g(n);
for i from 1 while not (k::integer and k > n) do k:= g(k) od:
i
end proc:
M:= 2: A:= 2: count:= 1:
for n from 3 while count < 17 do
v:= h(n);
if v > M then count:= count+1; A:= A, n; M:= v fi;
od:
A;
MATHEMATICA
g = 5/3 * Floor[#]&;
h[n_] := Module[{i, k}, k = g[n]; For[i = 1, !IntegerQ[k] && k > n, i++, k = g[k]]; i];
M = 2; A = {2}; count = 1;
For[n = 3, count < 17, n++, v = h[n]; If[v > M, count++; A = Append[A, n]; Print[A]; M = v]];
A (* Jean-François Alcover, Sep 14 2023, after Robert Israel *)
CROSSREFS
Sequence in context: A018615 A082842 A018648 * A018670 A018704 A018751
KEYWORD
nonn
AUTHOR
Robert Israel, Sep 01 2023
EXTENSIONS
a(18)-a(21) from Chai Wah Wu, Sep 02 2023
a(22)-a(28) from Martin Ehrenstein, Sep 03 2023
STATUS
approved