login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167423
Hankel transform of a simple Catalan convolution.
2
1, -1, -11, -50, -186, -631, -2029, -6299, -19075, -56704, -166164, -481391, -1381691, -3935125, -11134331, -31328366, -87721614, -244588519, -679429225, -1881102959, -5192705779, -14296088956, -39263958696, -107601905375, -294291714551, -803416991401
OFFSET
0,3
COMMENTS
Hankel transform of A167422.
FORMULA
G.f.: ( 1-7*x+6*x^2-x^3 ) / (x^2-3*x+1)^2 .
a(n) = F(2*n)*(1-3*n)/2 + L(2*n)*(1-n)/2. - Paul Barry, Feb 22 2010
a(n) = 3*A001871(n-1) - 2*A001871(n) + F(2*n+4). - Ralf Stephan, May 21 2014
a(n) = 1 - Sum_{k=1..n} k*F(2*k+1), where F(n) = A000045(n). - Vladimir Reshetnikov, Oct 28 2015
MATHEMATICA
Table[((1-3n) Fibonacci[2n] + (1-n) LucasL[2n])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
LinearRecurrence[{6, -11, 6, -1}, {1, -1, -11, -50}, 50] (* G. C. Greubel, Jun 12 2016 *)
PROG
(PARI) Vec((1-7*x+6*x^2-x^3)/(1-6*x+11*x^2-6*x^3+x^4) + O(x^100)) \\ Altug Alkan, Oct 29 2015
(Magma) [Fibonacci(2*n)*(1-3*n)/2 + Lucas(2*n)*(1-n)/2: n in [0..30]]; // Vincenzo Librandi, Jun 13 2016
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Nov 03 2009
STATUS
approved