login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of o.g.f. 2*(1+x)^2/(1-2*x+sqrt(1-8*x)).
5

%I #37 Nov 11 2024 22:36:41

%S 1,5,20,96,528,3136,19584,126720,841984,5710848,39376896,275185664,

%T 1944821760,13875707904,99807723520,722997411840,5269761884160,

%U 38620004352000,284405842575360,2103530005463040,15619068033761280

%N Expansion of o.g.f. 2*(1+x)^2/(1-2*x+sqrt(1-8*x)).

%H G. C. Greubel, <a href="/A182959/b182959.txt">Table of n, a(n) for n = 0..1000</a>

%F Let F(x) be the g.f. of A182960, then g.f. of this sequence satisfies:

%F * A(x) = F(x/A(x)^3) and A(x*F(x)^3) = F(x);

%F * A(x) = [x/Series_Reversion( x*F(x)^3 )]^(1/3).

%F G.f.: 1/2/x - 1/2 - x - (1+x)/x/G(0), where G(k)= 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 24 2013

%F a(n) ~ 9*2^(3*n-2)/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jun 29 2013

%F From _Peter Bala_, Oct 04 2015: (Start)

%F O.g.f. A(x) = (1 + x)*(2*C(2*x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.

%F [x^n] A(x)^(3*n) = binomial(6*n,2*n). Cf. with the identity [x^n] ( (1 + x)*C(x) )^(5*n) = binomial(5*n,2*n) = A001450(n). (End)

%F Conjecture: D-finite with recurrence (n+1)*a(n) +(-7*n+3)*a(n-1) +4*(-2*n+5)*a(n-2)=0. - _R. J. Mathar_, Jan 22 2020

%F From _Peter Bala_, May 15 2023: (Start)

%F a(n) = 3*(2^n)*(3*n - 1)/(n*(n + 1)) * binomial(2*n-2,n-1) for n >= 2.

%F (n + 1)*(3*n - 4)*a(n) = 4*(2*n - 3)*(3*n - 1)*a(n-1) for n >= 3 with a(2) = 20. Mathar's conjectured second order recurrence above follows from this. (End)

%F [x^n] A(x)^n = A372215(n). - _Peter Bala_, Nov 07 2024

%e G.f.: A(x) = 1 + 5*x + 20*x^2 + 96*x^3 + 528*x^4 + 3136*x^5 +...

%e where A(x*F(x)^3) = F(x) is the g.f. of A182960:

%e F(x) = 1 + 5*x + 95*x^2 + 2496*x^3 + 76063*x^4 + 2524161*x^5 +...

%t CoefficientList[ Series[2 (1 + x)^2/(1 - 2 x + Sqrt[1 - 8 x]), {x, 0, 20}], x] (* _Robert G. Wilson v_, Dec 31 2010 *)

%o (PARI) {a(n)=polcoeff(2*(1+x)^2/(1-2*x+sqrt(1-8*x+x*O(x^n))),n)}

%Y Cf. A182960, A001450, A167422, A372215.

%K nonn,easy

%O 0,2

%A _Paul D. Hanna_, Dec 31 2010