login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349517
G.f. A(x) satisfies: A(x) = (1 + 4 * x * A(x)^3) / (1 - x).
1
1, 5, 65, 1145, 23185, 509005, 11782465, 283138545, 6996125985, 176633573205, 4536739406465, 118166489152745, 3113854691067185, 82864654201672605, 2223776891616904065, 60113561634017675745, 1635364503704652830785, 44739382956328846263205, 1230059816693141938275265
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = a(n-1) + 4 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+2*k,3*k) * binomial(3*k,k) * 4^k / (2*k+1).
a(n) ~ sqrt((1 + (1 + 1/phi^(2/3) + phi^(2/3))^3/2) / (2*Pi)) / (6 * n^(3/2) * (1 + 3/phi^(1/3) - 3*phi^(1/3))^n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 21 2021
MATHEMATICA
nmax = 18; A[_] = 0; Do[A[x_] = (1 + 4 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + 4 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 18}]
Table[Sum[Binomial[n + 2 k, 3 k] Binomial[3 k, k] 4^k/(2 k + 1), {k, 0, n}], {n, 0, 18}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+2*k, 3*k) * binomial(3*k, k) * 4^k / (2*k+1)) \\ Andrew Howroyd, Nov 20 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 20 2021
STATUS
approved