OFFSET
1,1
COMMENTS
A shape/object consists of n divisions (cells) that rotates around its center and consists of 4 identical arms at 90-degree intervals.
Each division (cell) can be unpainted (white) or painted (black).
(4n-3) is the number of divisions (cells) on the object/shape which consists of 4 identical arms at 90-degree intervals.
REFERENCES
A. Nesin, Matematik ve sonsuz [Math and infinity], Nesin Yayıncılık, 2019, pages 137-143.
LINKS
Gulnur Ozbek, Illustrations for initial terms (with painted cells black, unpainted cells white).
Index entries for linear recurrences with constant coefficients, signature (22,-104,128).
FORMULA
a(n) = 2^(4n-5) + 2^(2n-3) + 2^(n-1).
a(n) is the sum of the terms in the n-th row of the following triangle, where k is the number of divisions (cells) which are colored/painted black.
.
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 4n-3
---+--------------------------------------------------------------------------
1 | 1 1
2 | 1 2 3 3 2 1
3 | 1 3 10 22 34 34 22 10 3 1
4 | 1 4 21 73 184 327 434 434 327 184 73 21 4 1
5 | 1 5 36 172 604 1556 3108 4876 6098 6098 4876 3108 1556 604 172 36 5 1
...|
n | 1 n ...
The term at the intersection of any row and column is
C((4n-3),k)/4 + C([(4n-3)/2],[k/2])/4
+ C([(4n-3)/4],[k/4])/2 for k == 0 or 1 (mod 4),
C((4n-3),k)/4 + C([(4n-3)/2],[k/2])/4 for k == 2 or 3 (mod 4)
where [] is the floor function.
G.f.: 2*x*(1 - 16*x + 42*x^2)/((1 - 2*x)*(1 - 4*x)*(1 - 16*x)). - Stefano Spezia, Dec 03 2023
EXAMPLE
In the figures below, "[ ]" represents an unpainted cell; "[o]" represents a painted cell.
For n = 1, there are a(1) = 2 combinations:
.
[ ] [o]
.
For n = 2, there are a(2) = 12 combinations:
.
[ ] [ ] [ ] [ ]
[ ][ ][ ] [ ][ ][o] [ ][o][ ] [ ][o][o]
[ ] [ ] [ ] [ ]
.
[ ] [o] [o] [o]
[o][ ][o] [ ][ ][o] [o][ ][ ] [ ][o][ ]
[ ] [ ] [o] [o]
.
[ ] [o] [o] [o]
[o][o][ ] [o][o][ ] [o][ ][o] [o][o][o]
[o] [o] [o] [o]
.
For n = 3, there are a(3) = 140 combinations:
.
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ][ ][ ][ ][ ] [ ][ ][ ][o][ ] [ ][ ][ ][ ][o] [ ][ ][o][ ][ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
.
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ][ ][o][o][ ] [ ][ ][o][ ][o] [ ][ ][ ][o][o] [ ][o][ ][o][ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
...
MATHEMATICA
CoefficientList[Series[2*(1 - 16*x + 42*x^2)/((1 - 2*x)*(1 - 4*x)*(1 - 16*x)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Dec 10 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved