login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.
7

%I #36 Feb 09 2017 09:17:27

%S 1,1,1,1,1,1,2,1,1,1,3,3,5,16,1,1,1,3,4,9,25,49,70,168,768,1,1,1,3,4,

%T 10,30,63,162,372,1506,3300,7887,15015,48048,292864,1,1,1,3,4,10,31,

%U 69,182,525,1911,5115,17347,43758,149721,626769,1946516,4934930

%N Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.

%C A(n,k) is defined for n,k >= 0. A(n,k) = 0 iff n > k*(k+1)/2 = A000217(k). The triangle contains only the nonzero terms. A(n,k) = A(n,n) for k>=n.

%H Alois P. Heinz, <a href="/A219272/b219272.txt">Columns k = 0..22, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>

%F T(n,k) = Sum_{i=0..k} A219274(n,i).

%e A(3,2) = 2:

%e +------+ +------+

%e | 1 2 | | 1 3 |

%e | 3 .--+ | 2 .--+

%e +---+ +---+

%e A(3,3) = 3:

%e +------+ +------+ +---------+

%e | 1 2 | | 1 3 | | 1 2 3 |

%e | 3 .--+ | 2 .--+ +---------+

%e +---+ +---+

%e Triangle A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e . 1, 1, 1, 1, 1, 1, 1, 1, ...

%e . 1, 1, 1, 1, 1, 1, 1, ...

%e . 2, 3, 3, 3, 3, 3, 3, ...

%e . 3, 4, 4, 4, 4, 4, ...

%e . 5, 9, 10, 10, 10, 10, ...

%e . 16, 25, 30, 31, 31, 31, ...

%e . 49, 63, 69, 70, 70, ...

%e . 70, 162, 182, 189, 190, ...

%p h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+

%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)

%p end:

%p g:= proc(n, i, l) local s; s:=i*(i+1)/2;

%p `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,

%p g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))

%p end:

%p A:= (n, k)-> g(n, k, []):

%p seq(seq(A(n, k), n=0..k*(k+1)/2), k=0..7);

%t h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];

%t g[n_, i_, l_] := g[n, i, l] = With[{s=i*(i+1)/2}, If[n==s, h[Join[l, Table[ i-j, {j, 0, i-1}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]];

%t A[n_, k_] := g[n, k, {}];

%t Table[Table[A[n, k], {n, 0, k*(k+1)/2}], {k, 0, 7}] // Flatten (* _Jean-François Alcover_, Feb 29 2016, after _Alois P. Heinz_ *)

%Y Column heights are A000124.

%Y Column sums give: A219273.

%Y Diagonal gives: A218293.

%Y Leftmost nonzero elements give A219339.

%Y Column of leftmost nonzero element is A002024(n) for n>0.

%Y T(A000217(n),n) = A005118(n+1).

%K nonn,tabf

%O 0,7

%A _Alois P. Heinz_, Nov 17 2012