The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018241 Number of simple allowable sequences on 1..n. 3
 1, 1, 2, 32, 4608, 7028736, 132089118720, 34998332896051200, 147462169661142781132800, 11008782516353752266715850342400, 16061608070479103314001351327405309952000, 500842967990688435516159987675099451681186775040000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102. G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..40 G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87. [Annotated scanned copy] R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372. FORMULA a(n) = (n-2)!*C(n,2)! / (1^{n-1} * 3^{n-2} * ... * (2n-3)^1). a(n) ~ Pi * exp(n^2/4 - 3*n/2 + 7/24) * n^(n^2/2 + n/2 - 13/24) / (A^(1/2) * 2^(n^2 - n/2 - 19/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014 MAPLE A018241 := proc(n) local i; (n-2)!*binomial(n, 2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end; MATHEMATICA a[n_] := (n*(n-1)/2)!*(n-2)! / Product[ (2i+1)^(n-i-1), {i, 0, n-2}]; a[1] = 1; Table[ a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 25 2012 *) CROSSREFS Cf. A003121, A005118, A074962. Sequence in context: A068183 A166077 A053853 * A012599 A247859 A202629 Adjacent sequences: A018238 A018239 A018240 * A018242 A018243 A018244 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 15:23 EDT 2023. Contains 365711 sequences. (Running on oeis4.)