OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..39
FORMULA
a(n) = Product_{k=0..n} (2*k+0^k)^(n-k).
Essentially the same as A108400.
From Alexander R. Povolotsky, Feb 10 2011: (Start)
WolframAlpha shows that
a(n) = (0^n*2^(1/2*(n-1)*n)*exp^(1/12-zeta^(1, 0)(-1, n+1)))/A
where zeta(s, a)is the generalized Riemann zeta function and A is the Glaisher‐Kinkelin constant.
WolframAlpha suggests that for all terms given
a(n) = 2^(1/2*(n-1)*n)*G(n+1)
where G(n) is the Barnes G-function. (End)
a(n) ~ 2^(n^2/2) * n^(n^2/2 - 1/12) * Pi^(n/2) / (A * exp(3*n^2/4 - 1/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019
MATHEMATICA
Table[2^(1/2*(n - 1)*n)*BarnesG[n + 1], {n, 0, 25}] (* G. C. Greubel, Feb 22 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 09 2011
STATUS
approved