|
|
A186002
|
|
Hankel transform of A186001.
|
|
2
|
|
|
1, 1, 2, 16, 768, 294912, 1132462080, 52183852646400, 33664847019245568000, 347485857744891213250560000, 64560982045934655213753964953600000, 239901585047846581083822477336190648320000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Product_{k=0..n} (2*k+0^k)^(n-k).
WolframAlpha shows that
a(n) = (0^n*2^(1/2*(n-1)*n)*exp^(1/12-zeta^(1, 0)(-1, n+1)))/A
where zeta(s, a)is the generalized Riemann zeta function and A is the Glaisher‐Kinkelin constant.
WolframAlpha suggests that for all terms given
a(n) = 2^(1/2*(n-1)*n)*G(n+1)
where G(n) is the Barnes G-function. (End)
a(n) ~ 2^(n^2/2) * n^(n^2/2 - 1/12) * Pi^(n/2) / (A * exp(3*n^2/4 - 1/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019
|
|
MATHEMATICA
|
Table[2^(1/2*(n - 1)*n)*BarnesG[n + 1], {n, 0, 25}] (* G. C. Greubel, Feb 22 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|