login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186004
Distance array associated with ordering A057557 of N X N X N, by antidiagonals (distances to xz plane).
4
1, 2, 3, 4, 6, 7, 5, 9, 13, 14, 8, 12, 17, 24, 25, 10, 16, 23, 29, 40, 41, 11, 19, 28, 39, 46, 62, 63, 15, 22, 32, 45, 61, 69, 91, 92, 18, 27, 38, 50, 68, 90, 99, 128, 129, 20, 31, 44, 60, 74, 98, 127, 137, 174, 175, 21, 34, 49, 67, 89, 105, 136, 173, 184, 230, 231, 26, 37, 53, 73, 97, 126, 144, 183, 229, 241, 297, 298
OFFSET
1,2
COMMENTS
Let n=n(i,j,k) be the position of (i,j,k) in the lexicographic ordering A057557 of N X N X N, where N={1,2,3,...}. Row h of A186004 lists those n for which j=n, the distance from (i,j,k) to the xz-plane. Every positive integer occurs exactly once in the array, so that as a sequence, A186004 is a permutation of the positive integers.
EXAMPLE
Northwest corner:
1, 2, 4, 5, 8, 10
3, 6, 9, 12, 16, 19
7, 13, 17, 23, 28, 32
14, 24, 29, 39, 45, 50
25, 40, 46, 61, 68, 74
T(2,2)=6, the position of (1,2,2) in the ordering
(1,1,1) < (1,1,2) < (1,2,1) < (2,1,1) < (1,1,3) < (1,2,2) < (1,3,1) < ...
MATHEMATICA
lexicographicLattice[{dim_, maxHeight_}]:=Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1, {dim}], 1]&, maxHeight], 1];
lexicographicLatticeHeightArray[{dim_, maxHeight_, axis_}]:=Array[Flatten@Position[Map[#[[axis]]&, lexicographicLattice[{dim, maxHeight}]], #]&, maxHeight];
llha=lexicographicLatticeHeightArray[{3, 12, 2}];
ordering=lexicographicLattice[{2, Length[llha]}];
llha[[#1, #2]]&@@#1&/@ordering
(* Peter J. C. Moses, Feb 15 2011 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 10 2011
STATUS
approved