login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186007
Array by antidiagonals: R(i,j)=number of the row of the Wythoff array which includes row(i+j)-row(i).
1
1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 4, 1, 8, 3, 1, 2, 1, 3, 1, 3, 6, 1, 2, 4, 1, 3, 1, 1, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 1, 1, 5, 2, 11, 4, 1, 8
OFFSET
1,7
COMMENTS
The rows of the Wythoff array are essentially the positive Fibonacci sequences. If i>=1 and j>=1, then row(i+j)-row(i) is a positive Fibonacci sequence and therefore a tail of a row of the Wythoff array.
LINKS
EXAMPLE
Northwest corner:
1....1....1....2....1....3....2....1....4....3
1....1....1....3....1....4....2....1....6....3
1....3....1....2....1....3....8....1....4....11
1....1....1....3....1....3....2....1....4....3
1....1....2....3....1....4....2....1....6....3
Let W be the Wythoff array (A035513).
row 8 of W: 19,31,50,81,...
row 2 of W: 4,7,11,18,...
(row 8)-(row 2): 15,24,39,63,... a tail of row 4,
so that R(2,6)=4.
MATHEMATICA
w[{n_, k_}] := w[{n, k}] = Fibonacci[k + 1] Floor[n GoldenRatio] + (n - 1) Fibonacci[k];
f = Map[w[{Plus @@ #, {1, 2}}] - w[{#[[1]], {1, 2}}] &, Flatten[Table[{k, z - k + 1}, {z, 15}, {k, z}], 1]];
Module[{n, z}, Table[n = 1; While[(z = 1; While[First[f[[k]]] >= w[{n, z}], z++]); f[[k]] != {w[{n, z - 1}], w[{n, z}]}, n++]; n, {k, 1, Length[f]}]] (* Peter J. C. Moses, Apr 13 2013 *)
CROSSREFS
Cf. A035513, A185735 (addition table for Wythoff rows).
Sequence in context: A065371 A300982 A354203 * A212623 A229214 A349685
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 10 2011
EXTENSIONS
Corrections and additions by Clark Kimberling, Apr 13 2013
STATUS
approved