login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186007 Array by antidiagonals:  R(i,j)=number of the row of the Wythoff array which includes row(i+j)-row(i). 1
1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 4, 1, 3, 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 4, 1, 8, 3, 1, 2, 1, 3, 1, 3, 6, 1, 2, 4, 1, 3, 1, 1, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 1, 1, 5, 2, 11, 4, 1, 8 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

The rows of the Wythoff array are essentially the positive Fibonacci sequences.  If i>=1 and j>=1, then row(i+j)-row(i) is a positive Fibonacci sequence and therefore a tail of a row of the Wythoff array.

LINKS

Clark Kimberling, Antidiagonals n=1..60, flattened

EXAMPLE

Northwest corner:

1....1....1....2....1....3....2....1....4....3

1....1....1....3....1....4....2....1....6....3

1....3....1....2....1....3....8....1....4....11

1....1....1....3....1....3....2....1....4....3

1....1....2....3....1....4....2....1....6....3

Let W be the Wythoff array (A035513).

row 8 of W: 19,31,50,81,...

row 2 of W:  4,7,11,18,...

(row 8)-(row 2): 15,24,39,63,... a tail of row 4,

so that R(2,6)=4.

MATHEMATICA

w[{n_, k_}] := w[{n, k}] = Fibonacci[k + 1] Floor[n GoldenRatio] + (n - 1) Fibonacci[k];

f = Map[w[{Plus @@ #, {1, 2}}] - w[{#[[1]], {1, 2}}] &, Flatten[Table[{k, z - k + 1}, {z, 15}, {k, z}], 1]];

Module[{n, z}, Table[n = 1; While[(z = 1; While[First[f[[k]]] >= w[{n, z}], z++]); f[[k]] != {w[{n, z - 1}], w[{n, z}]}, n++]; n, {k, 1, Length[f]}]] (* Peter J. C. Moses, Apr 13 2013 *)

CROSSREFS

Cf. A035513, A185735 (addition table for Wythoff rows).

Sequence in context: A117811 A051793 A065371 * A212623 A229214 A218578

Adjacent sequences:  A186004 A186005 A186006 * A186008 A186009 A186010

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling, Feb 10 2011

EXTENSIONS

Corrections and additions by Clark Kimberling, Apr 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 29 22:12 EDT 2017. Contains 285615 sequences.