|
|
A186008
|
|
Irregular triangle T(n,k) read by rows, in which row n has the pattern of conjectured dropping times in the Collatz iteration.
|
|
2
|
|
|
2, 4, 16, 12, 32, 8, 52, 128, 40, 56, 84, 136, 160, 180, 256, 60, 80, 136, 220, 288, 296, 448, 528, 636, 688, 712, 1024, 152, 232, 384, 648, 704, 788, 856, 1000, 1204, 1416, 1472, 1556, 1592, 1624, 1800, 1972, 2008, 2120, 2356, 2360, 2676, 2744, 2888, 2912, 3064, 3328, 3444, 3680, 3832, 4096
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Consider A126241, the sequence of dropping times in the Collatz iteration. Only zero and the numbers in A020914 can be dropping times. The dropping times in A126241 have a definite pattern. For example, 1 appears at positions n = 2 + 2*i, for i=0,1,2,3,... Similarly, 2 appears at positions n = 5 + 4*i; 4 appears at n = 3 + 16*i; 5 appears at n = 11 + {12,32}*i; and 7 appears at 7 + {8, 52, 128}*i. In general, if we let s=A020914(r) be the r-th possible stopping time, then A126241(n) = s for n = A122442(r) + T(r)*i, where T(r) is the r-th row of this triangle. The length of row n is A186009(n). The n-th row ends with 2^A020914(n).
The frequency of the r-th dropping time s=A020914(r) can be computed as A186009(r)/2^s. The first few frequencies are 1/2, 1/4, 1/16, 1/16, 3/128, 7/256, 3/256, 15/2048, and 85/8192.
The term "stopping time" is sometimes used instead of "dropping time", but the former usually refers to A006666.
This sequence is closely related to A177789.
|
|
REFERENCES
|
J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. See pp. 33, 35ff.
|
|
LINKS
|
|
|
EXAMPLE
|
The triangle begins
2
4
16
12, 32
8, 52, 128
40, 56, 84, 136, 160, 180, 256
60, 80, 136, 220, 288, 296, 448, 528, 636, 688, 712, 1024
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|