login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186006
Lexicographic ordering of N x N x N x N x N, where N={1,2,3,...}.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 3
OFFSET
1,10
COMMENTS
By changing a single number, the Mathematica code suffices for other dimensions: N x N (A057555), N x N x N (A057557), N x N x N x N (A057559), and higher.
LINKS
EXAMPLE
First, list the 5-tuples in lexicographic order: (1,1,1,1,1) < (1,1,1,1,2) < (1,1,1,2,1) < (1,1,2,1,1) < ... < (1,2,2,1,1) < (1,1,3,1,1) < ... Then flatten the list, leaving 1,1,1,1,1, 1,1,1,1,2, 1,1,1,2,1, 1,1,2,1,1, ...
MATHEMATICA
lexicographicLattice[{dim_, maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1, {dim}], 1]&, maxHeight], 1];
lexicographicLatticeHeightArray[{dim_, maxHeight_, axis_}]:= Array[Flatten@Position[Map[#[[axis]]&, lexicographicLattice[{dim, maxHeight}]], #]&, maxHeight]
Take[Flatten@lexicographicLattice[{5, 12}], 160]
(* Peter J. C. Moses, Feb 10 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 10 2011
STATUS
approved