login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233775
Number of vertices in the n-th row of the Sierpinski gasket (cf. A047999).
9
1, 2, 3, 4, 5, 4, 6, 8, 9, 4, 6, 8, 10, 8, 12, 16, 17, 4, 6, 8, 10, 8, 12, 16, 18, 8, 12, 16, 20, 16, 24, 32, 33, 4, 6, 8, 10, 8, 12, 16, 18, 8, 12, 16, 20, 16, 24, 32, 34, 8, 12, 16, 20, 16, 24, 32, 36, 16, 24, 32, 40, 32, 48, 64, 65, 4, 6, 8, 10, 8, 12
OFFSET
0,2
COMMENTS
Partial sums give A233774.
The subsequence of odd terms is A083318. - Gary W. Adamson, Jan 13 2014
Equivalently, this is the coordination sequence for the Sierpinski gasket with respect to the apex. - N. J. A. Sloane, Sep 19 2020
FORMULA
a(0)=1, a(n) = (2^t(n) + 1) * 2^(c(n) - 1) where t(n) = A007814(n) is the number of trailing zeros in the binary representation of n and c(n) = A000120(n) is the total number of ones in the binary representation of n. - Johan Falk, Jun 24 2020
EXAMPLE
Illustration of initial terms:
--------------------------------------------------------
Diagram n a(n) A233774(n)
--------------------------------------------------------
* 0 1 1
/T\
*---* 1 2 3
/T\ /T\
*---*---* 2 3 6
/T\ /T\
*---* *---* 3 4 10
/T\ /T\ /T\ /T\
*---*---*---*---* 4 5 15
/T\ /T\
*---* *---* 5 4 19
--------------------------------------------------------
After five stages the number of "black" triangles in the structure is A006046(5) = 11 and the number of "black" triangles in row 5 is A001316(5-1) = 2. The number of vertices in row 5 is equal to 4, so a(5) = 4.
Written as an irregular triangle the sequence begins:
1;
2;
3;
4,5;
4,6,8,9;
4,6,8,10,8,12,16,17;
4,6,8,10,8,12,16,18,8,12,16,20,16,24,32,33;
...
MAPLE
A000120 := n -> add(i, i=convert(n, base, 2)):
A007814 := n -> padic[ordp](n, 2):
A233775 := n->(2^A007814(n)+1)*(2^(A000120(n)-1); # N. J. A. Sloane, Sep 19 2020
MATHEMATICA
A233775[n_] := If[n == 0, 1, (2^IntegerExponent[n, 2]+1)*2^(DigitSum[n, 2]-1)];
Array[A233775, 100, 0] (* Paolo Xausa, Aug 05 2024 *)
PROG
(PARI) print1("1, "); for(k=1, 70, print1((2^valuation(k, 2)+1) *2^(hammingweight(k)-1), ", ")) \\ Hugo Pfoertner, Jul 27 2020
CROSSREFS
Right border gives A094373.
Sequence in context: A137912 A324196 A269597 * A118577 A377070 A135681
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Dec 16 2013
STATUS
approved