OFFSET
1,2
COMMENTS
Row n is a finite set of products of prime power factors p^k (i.e., p^k | n) such that Sum_{p|n} k = bigomega(n), that is, numbers m such that rad(m) | n and m has the same number of prime factors with repetition than does n.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..12021, (rows n = 1..1500, flattened)
Michael De Vlieger, Diagrams of select a(n) illustrating rank omega(n)-1 simplexes formed by the arrangement of terms in row n by prime power decomposition.
Michael De Vlieger, Log log scatterplot of a(n), rows n = 1..65536 (1278755 terms).
FORMULA
EXAMPLE
Triangle begins:
n row n of this sequence:
-------------------------------------------
1: {1}
2: {2}
3: {3}
4: {4}
5: {5}
6: {4, 6, 9}
7: {7}
8: {8}
9: {9}
10: {4, 10, 25}
... (Select rows appear below)
12: {8, 12, 18, 27}
14: {4, 14, 49}
15: {9, 15, 25}
18: {8, 12, 18, 27}
20: {8, 20, 50, 125}
24: {16, 24, 36, 54, 81}
30: {8, 12, 18, 20, 27, 30, 45, 50, 75, 125}
42: {8, 12, 18, 27, 28, 42, 63, 98, 147, 343}
60: {16, 24, 36, 40, 54, 60, 81, 90, 100, 135, 150, 225, 250, 375, 625}.
.
Diagrams of the rank omega(n)-1 simplexes created by row n of this sequence for select n, ordering k in row n by prime decomposition. The number k = n appears in brackets:
Rank 3:
n = 30: n = 42:
8 8
/ \ / \
12 -- 20 12 -- 28
/ \ / \ / \ / \
18 --[30]-- 50 18 --[42]-- 98
/ \ / \ / \ / \ / \ / \
27 -- 45 -- 75 -- 125 27 -- 63 --147 -- 343
.
n = 60: 16
/ \
24 -- 40
/ \ / \
36 --[60]-- 50
/ \ / \ / \
54 -- 90 -- 75 --125
/ \ / \ / \ / \
81 --150 --135 --375 --625
.
Rank 4:
n = 210:
16
40
24 56
100
60 140
36 84 196
250
150 350
90 [210] 490
54 126 294 686
625
375 875
225 525 1225
135 315 735 1715
81 189 441 1029 2401
MATHEMATICA
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
Table[k = PrimeOmega[n]; Select[Range[n^PrimeNu[n]], Divisible[n, rad[#]] && PrimeOmega[#] == k &], {n, 30}]
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Michael De Vlieger, Oct 25 2024
STATUS
approved