login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n,k) the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*(k mod 2)*q^k.
2

%I #14 Jun 26 2019 08:25:43

%S 0,0,1,0,2,0,0,3,0,6,0,4,0,24,0,0,5,0,60,0,30,0,6,0,120,0,180,0,0,7,0,

%T 210,0,630,0,140,0,8,0,336,0,1680,0,1120,0,0,9,0,504,0,3780,0,5040,0,

%U 630,0,10,0,720,0,7560,0,16800,0,6300,0,0,11,0,990,0,13860,0,46200,0,34650,0,2772,0,12

%N Triangle read by rows, T(n,k) the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*(k mod 2)*q^k.

%C Substituting q^k -> 1/(floor(k/2)+1) in the polynomials gives the complementary Motzkin numbers A005717. (See A089627 for the Motzkin numbers and A163649 for the extended Motzkin numbers.)

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers</a>.

%F egf(x,y) = x*y*exp(x)*BesselI(0,2*x*y).

%e 0

%e 0, 1

%e 0, 2, 0

%e 0, 3, 0, 6

%e 0, 4, 0, 24, 0

%e 0, 5, 0, 60, 0, 30

%e 0, 6, 0, 120, 0, 180, 0

%e 0, 7, 0, 210, 0, 630, 0, 140

%e 0

%e q

%e 2 q

%e 3 q + 6 q^3

%e 4 q + 24 q^3

%e 5 q + 60 q^3 + 30 q^5

%e 6 q + 120 q^3 + 180 q^5

%e 7 q + 210 q^3 + 630 q^5 + 140 q^7

%p A194586 := proc(n,k) local j, swing; swing := n -> n!/iquo(n,2)!^2:

%p add(binomial(n,j)*swing(j)*q^j*(j mod 2),j=0..n); coeff(%,q,k) end:

%p seq(print(seq(A194586(n,k),k=0..n)),n=0..8);

%t sf[n_] := n!/Quotient[n, 2]!^2;

%t row[n_] := Sum[Binomial[n, j] sf[j] q^j Mod[j, 2], {j, 0, n}] // CoefficientList[#, q]& // PadRight[#, n+1]&;

%t Table[row[n], {n, 0, 12}] (* _Jean-François Alcover_, Jun 26 2019 *)

%Y Row sums are A109188. Cf. A056040, A005717, A163649, A089627.

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, Aug 29 2011