login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194589
a(n) = A194588(n) - A005043(n); complementary Riordan numbers.
3
0, 0, 1, 1, 5, 11, 34, 92, 265, 751, 2156, 6194, 17874, 51702, 149941, 435749, 1268761, 3700391, 10808548, 31613474, 92577784, 271407896, 796484503, 2339561795, 6877992334, 20236257626, 59581937299, 175546527727, 517538571125, 1526679067331, 4505996000730
OFFSET
0,5
COMMENTS
The inverse binomial transform of a(n) is A194590(n).
FORMULA
a(n) = sum_{k=0..n} C(n,k)*A194590(k).
a(n) = (n mod 2)+(1/2)*sum_{k=1..n} (-1)^k*C(n,k)*(k+1)$*((k+1)/2)^(k mod 2). Here n$ denotes the swinging factorial A056040(n).
a(n) = PSUMSIGN([0,0,1,2,6,16,45,..] = PSUMSIGN([0,0,A005717]) where PSUMSIGN is from Sloane's "Transformations of integer sequences". - Peter Luschny, Jan 17 2012
A(x) = B'(x)*(1/x^2-1/(B(x)*x)), where B(x)/x is g.f. of A005043. - Vladimir Kruchinin, Sep 28 2015
a(n) = Sum_{k=0..n/2} C(n+2,k)*C(n-k,k). - Vladimir Kruchinin, Sep 28 2015
a(n) = hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4) for n>=3. - Peter Luschny, Mar 07 2017
a(n) ~ 3^(n + 1/2) / (8*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 17 2024
MAPLE
# First method, describes the derivation:
A056040 := n -> n!/iquo(n, 2)!^2:
A057977 := n -> A056040(n)/(iquo(n, 2)+1);
A001006 := n -> add(binomial(n, k)*A057977(k)*irem(k+1, 2), k=0..n):
A005043 := n -> `if`(n=0, 1, A001006(n-1)-A005043(n-1)):
A189912 := n -> add(binomial(n, k)*A057977(k), k=0..n):
A194588 := n -> `if`(n=0, 1, A189912(n-1)-A194588(n-1)):
A194589 := n -> A194588(n)-A005043(n):
# Second method, more efficient:
A100071 := n -> A056040(n)*(n/2)^(n-1 mod 2):
A194589 := proc(n) local k;
(n mod 2)+(1/2)*add((-1)^k*binomial(n, k)*A100071(k+1), k=1..n) end:
# Alternatively:
a := n -> `if`(n<3, iquo(n, 2), hypergeom([1-n/2, -n, 3/2-n/2], [1, 2-n], 4)): seq(simplify(a(n)), n=0..30); # Peter Luschny, Mar 07 2017
MATHEMATICA
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jul 30 2013, from 2nd method *)
Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n, 0, 30}] (* Peter Luschny, Mar 07 2017 *)
PROG
(Maxima)
a(n):=sum(binomial(n+2, k)*binomial(n-k, k), k, 0, (n)/2); /* Vladimir Kruchinin, Sep 28 2015 */
(PARI) a(n) = sum(k=0, n/2, binomial(n+2, k)*binomial(n-k, k));
vector(30, n, a(n-3)) \\ Altug Alkan, Sep 28 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 30 2011
STATUS
approved