login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A194588(n) - A005043(n); complementary Riordan numbers.
3

%I #31 Feb 17 2024 04:35:57

%S 0,0,1,1,5,11,34,92,265,751,2156,6194,17874,51702,149941,435749,

%T 1268761,3700391,10808548,31613474,92577784,271407896,796484503,

%U 2339561795,6877992334,20236257626,59581937299,175546527727,517538571125,1526679067331,4505996000730

%N a(n) = A194588(n) - A005043(n); complementary Riordan numbers.

%C The inverse binomial transform of a(n) is A194590(n).

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostCatalanNumbers">The lost Catalan numbers</a>.

%F a(n) = sum_{k=0..n} C(n,k)*A194590(k).

%F a(n) = (n mod 2)+(1/2)*sum_{k=1..n} (-1)^k*C(n,k)*(k+1)$*((k+1)/2)^(k mod 2). Here n$ denotes the swinging factorial A056040(n).

%F a(n) = PSUMSIGN([0,0,1,2,6,16,45,..] = PSUMSIGN([0,0,A005717]) where PSUMSIGN is from Sloane's "Transformations of integer sequences". - Peter Luschny, Jan 17 2012

%F A(x) = B'(x)*(1/x^2-1/(B(x)*x)), where B(x)/x is g.f. of A005043. - _Vladimir Kruchinin_, Sep 28 2015

%F a(n) = Sum_{k=0..n/2} C(n+2,k)*C(n-k,k). - _Vladimir Kruchinin_, Sep 28 2015

%F a(n) = hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4) for n>=3. - _Peter Luschny_, Mar 07 2017

%F a(n) ~ 3^(n + 1/2) / (8*sqrt(Pi*n)). - _Vaclav Kotesovec_, Feb 17 2024

%p # First method, describes the derivation:

%p A056040 := n -> n!/iquo(n,2)!^2:

%p A057977 := n -> A056040(n)/(iquo(n,2)+1);

%p A001006 := n -> add(binomial(n,k)*A057977(k)*irem(k+1,2),k=0..n):

%p A005043 := n -> `if`(n=0,1,A001006(n-1)-A005043(n-1)):

%p A189912 := n -> add(binomial(n,k)*A057977(k),k=0..n):

%p A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):

%p A194589 := n -> A194588(n)-A005043(n):

%p # Second method, more efficient:

%p A100071 := n -> A056040(n)*(n/2)^(n-1 mod 2):

%p A194589 := proc(n) local k;

%p (n mod 2)+(1/2)*add((-1)^k*binomial(n,k)*A100071(k+1),k=1..n) end:

%p # Alternatively:

%p a := n -> `if`(n<3,iquo(n,2),hypergeom([1-n/2,-n,3/2-n/2],[1,2-n],4)): seq(simplify(a(n)), n=0..30); # _Peter Luschny_, Mar 07 2017

%t sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Mod[n, 2] + (1/2)*Sum[(-1)^k*Binomial[n, k]*2^-Mod[k, 2]*(k+1)^Mod[k, 2]*sf[k+1], {k, 1, n}]; Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Jul 30 2013, from 2nd method *)

%t Table[If[n < 3, Quotient[n, 2], HypergeometricPFQ[{1 - n/2, -n, 3/2 - n/2}, {1, 2-n}, 4]], {n,0,30}] (* _Peter Luschny_, Mar 07 2017 *)

%o (Maxima)

%o a(n):=sum(binomial(n+2,k)*binomial(n-k,k),k,0,(n)/2); /* _Vladimir Kruchinin_, Sep 28 2015 */

%o (PARI) a(n) = sum(k=0, n/2, binomial(n+2,k)*binomial(n-k,k));

%o vector(30, n, a(n-3)) \\ _Altug Alkan_, Sep 28 2015

%Y Cf. A005043, A189912, A194588, A100071, A005717.

%K nonn

%O 0,5

%A _Peter Luschny_, Aug 30 2011