login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1*7^n + 2*6^n + 3*5^n + 4*4^n + 5*3^n + 6*2^n + 7*1^n.
7

%I #36 Sep 27 2024 13:40:19

%S 28,84,336,1596,8400,47244,278256,1695036,10592400,67518444,437200176,

%T 2867080476,18997064400,126948964044,854359702896,5783851121916,

%U 39350309552400,268842017200044,1843254419626416,12675940450459356

%N a(n) = 1*7^n + 2*6^n + 3*5^n + 4*4^n + 5*3^n + 6*2^n + 7*1^n.

%C This is the sequence of seventh terms of "second partial sums of m-th powers".

%H Colin Barker, <a href="/A254145/b254145.txt">Table of n, a(n) for n = 0..1000</a>

%H Luciano Ancora, <a href="/A254145/a254145_2.pdf">Demonstration of formula</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (28,-322,1960,-6769,13132,-13068,5040).

%F G.f.: -4*(17316*x^6 - 32926*x^5 + 24199*x^4 - 8911*x^3 + 1750*x^2 - 175*x + 7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)). - _Colin Barker_, Jan 26 2015

%F From _Peter Bala_, Jan 31 2016: (Start)

%F a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 7.

%F a(n) = (1/6!)*Sum_{k = 0..n} (-1)^(k+n)*(k + 8)!*Stirling2(n,k)/ ((k + 1)*(k + 2)). (End)

%p seq(add(i*(8 - i)^n, i = 1..7), n = 0..20); # _Peter Bala_, Jan 31 2017

%t Table[6 2^n + 4 4^n + 5 3^n + 2 6^n + 3 5^n + 7^n + 7, {n, 0, 25}] (* *)

%t LinearRecurrence[{28,-322,1960,-6769,13132,-13068,5040},{28,84,336,1596,8400,47244,278256},30] (* or *) Table[Total[ Range[ 7]Range[ 7,1,-1]^n],{n,0,20}] (* _Harvey P. Dale_, Jun 21 2016 *)

%o (PARI) Vec(-4*(17316*x^6 -32926*x^5 +24199*x^4 -8911*x^3 +1750*x^2 -175*x +7) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)) + O(x^100)) \\ _Colin Barker_, Jan 26 2015

%Y Cf. A052548, A254028, A254030, A254031, A254144, A254146.

%K nonn,easy

%O 0,1

%A _Luciano Ancora_, Jan 26 2015