login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056128 a(n) = (9*n + 11)*binomial(n+10, 10)/11. 1
1, 20, 174, 988, 4277, 15288, 47320, 130832, 330174, 772616, 1696396, 3527160, 6995534, 13312768, 24426552, 43385360, 74847175, 125777340, 206390730, 331405620, 521690715, 806403000, 1225732560, 1834391520, 2706007980, 3938612496, 5661434520, 8043259504 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
a(n) = (9*n + 11)*binomial(n+10, 10)/11.
G.f.: (1+8*x)/(1-x)^12.
a(n) = 9*binomial(n+11,11) - 8*binomial(n+10,10). - G. C. Greubel, Jan 18 2020
MAPLE
seq( (9*n+11)*binomial(n+10, 10)/11, n=0..30); # G. C. Greubel, Jan 18 2020
MATHEMATICA
CoefficientList[Series[(1+8x)/(1-x)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 20, 174, 988, 4277, 15288, 47320, 130832, 330174, 772616, 1696396, 3527160}, 40] (* Harvey P. Dale, Jan 14 2015 *)
PROG
(Magma) [((9*n+11)*Binomial(n+10, 10))/11: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
(PARI) vector(31, n, (9*n-2)*binomial(n+9, 10)/11 ) \\ G. C. Greubel, Jan 18 2020
(Sage) [(9*n+11)*binomial(n+10, 10)/11 for n in (0..30)] # G. C. Greubel, Jan 18 2020
(GAP) List([0..30], n-> (9*n+11)*Binomial(n+10, 10)/11 ); # G. C. Greubel, Jan 18 2020
CROSSREFS
Cf. A056003.
Sequence in context: A010826 A022712 A359718 * A027791 A047819 A163689
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jul 08 2000
EXTENSIONS
New name, from existing formula, added by G. C. Greubel, Jan 18 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 09:29 EST 2024. Contains 370228 sequences. (Running on oeis4.)