login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027791
a(n) = 5*(n+1)*binomial(n+3,6).
1
20, 175, 840, 2940, 8400, 20790, 46200, 94380, 180180, 325325, 560560, 928200, 1485120, 2306220, 3488400, 5155080, 7461300, 10599435, 14805560, 20366500, 27627600, 37001250, 48976200, 64127700, 83128500, 106760745, 135928800, 171673040, 215184640, 267821400
OFFSET
3,1
COMMENTS
Number of 10-subsequences of [ 1, n ] with just 3 contiguous pairs.
LINKS
FORMULA
G.f.: 5*(4+3x)*x^3/(1-x)^8.
a(n) = C(n+1, 4)*C(n+3, 3) - Zerinvary Lajos, May 10 2005; corrected by R. J. Mathar, Mar 16 2016
From Amiram Eldar, Feb 01 2022: (Start)
Sum_{n>=3} 1/a(n) = 5939/300 - 2*Pi^2.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2 + 64*log(2)/5 - 5609/300. (End)
MATHEMATICA
Table[5(n+1)Binomial[n+3, 6], {n, 3, 30}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {20, 175, 840, 2940, 8400, 20790, 46200, 94380}, 30] (* Harvey P. Dale, Nov 24 2015 *)
CROSSREFS
Sequence in context: A022712 A359718 A056128 * A047819 A163689 A342387
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
STATUS
approved