OFFSET
0,5
LINKS
Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, On Polycosecant Numbers, J. Integer Seq. 23 (2020), no. 6, 17 pp. See Table 2 p. 9.
Kyosuke Nishibiro, On some properties of polycosecant numbers and polycotangent numbers, arXiv:2205.05247 [math.NT], 2022.
FORMULA
D(n, k) = Sum_{m=0..floor(n/2)} (1/(2*m+1)^(k+1))*Sum_{p=2*m..n} (-1)^p*(p+1)!*binomial(p, 2*m)*Stirling2(n+1,p+1)/2^p)).
EXAMPLE
The array begins:
1 1 1 1 1 ...
1 13 121 1093 9841 ...
1 121 4081 111721 2880481 ...
1 1093 111721 7256173 403087441 ...
1 9841 2880481 403087441 42931692481 ...
...
PROG
(PARI) D(n, k) = sum(m=0, n\2, (1/(2*m+1)^(k+1))*sum(p=2*m, n, (-1)^p*(p+1)!*binomial(p, 2*m)*stirling(n+1, p+1, 2)/2^p));
matrix(5, 5, n, k, n--; k--; D(2*n, -2*k-1))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, May 12 2022
STATUS
approved