login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array T(n,k) = D(2*n, -2*k-1), where D(i,j) are the polysecant numbers, for n,k >= 0, read by antidiagonals.
0

%I #13 Dec 26 2024 21:44:00

%S 1,1,1,1,13,1,1,121,121,1,1,1093,4081,1093,1,1,9841,111721,111721,

%T 9841,1,1,88573,2880481,7256173,2880481,88573,1,1,797161,72799321,

%U 403087441,403087441,72799321,797161,1,1,7174453,1827068881,20966597653,42931692481,20966597653,1827068881,7174453,1

%N Array T(n,k) = D(2*n, -2*k-1), where D(i,j) are the polysecant numbers, for n,k >= 0, read by antidiagonals.

%H Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Tsumura/tsumura3.html">On Polycosecant Numbers</a>, J. Integer Seq. 23 (2020), no. 6, 17 pp. See Table 2 p. 9.

%H Kyosuke Nishibiro, <a href="https://arxiv.org/abs/2205.05247">On some properties of polycosecant numbers and polycotangent numbers</a>, arXiv:2205.05247 [math.NT], 2022.

%F D(n, k) = Sum_{m=0..floor(n/2)} (1/(2*m+1)^(k+1))*Sum_{p=2*m..n} (-1)^p*(p+1)!*binomial(p, 2*m)*Stirling2(n+1,p+1)/2^p.

%e The array begins:

%e 1 1 1 1 1 ...

%e 1 13 121 1093 9841 ...

%e 1 121 4081 111721 2880481 ...

%e 1 1093 111721 7256173 403087441 ...

%e 1 9841 2880481 403087441 42931692481 ...

%e ...

%o (PARI) D(n, k) = sum(m=0, n\2, (1/(2*m+1)^(k+1))*sum(p=2*m, n, (-1)^p*(p+1)!*binomial(p, 2*m)*stirling(n+1,p+1,2)/2^p));

%o matrix(5,5,n, k, n--; k--; D(2*n,-2*k-1))

%Y Cf. A008277 (Stirling2), A001896, A001897, A353953.

%K nonn,tabl

%O 0,5

%A _Michel Marcus_, May 12 2022