login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174731
Triangle T(n, k, q) = (1-q^n)*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - (1-q^n) + 1, for q = 2, read by rows.
3
1, 1, 1, 1, -13, 1, 1, -74, -74, 1, 1, -278, -588, -278, 1, 1, -881, -3086, -3086, -881, 1, 1, -2539, -13207, -22097, -13207, -2539, 1, 1, -6884, -49724, -124694, -124694, -49724, -6884, 1, 1, -17884, -171184, -600424, -900892, -600424, -171184, -17884, 1
OFFSET
1,5
COMMENTS
From G. C. Greubel, Feb 09 2021: (Start)
The triangle coefficients are connected to the Narayana numbers by T(n, k, q) = (1-q^n)*(A001263(n, k) - 1) + 1, for varying q values.
The row sums of this class of sequences, for varying q, is given by Sum_{k=1..n} T(n, k, q) = q^n * n + (1 - q^n)*C_{n}, where C_{n} are the Catalan numbers (A000108). (End)
FORMULA
T(n, k, q) = (1-q^n)*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - (1-q^n) + 1, for q = 2.
From G. C. Greubel, Feb 09 2021: (Start)
T(n, k, 2) = (1-2^n)*(A001263(n,k) - 1) + 1.
Sum_{k=1..n} T(n, k, 2) = 2^n * n + (1 - 2^n)*A000108(n). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -13, 1;
1, -74, -74, 1;
1, -278, -588, -278, 1;
1, -881, -3086, -3086, -881, 1;
1, -2539, -13207, -22097, -13207, -2539, 1;
1, -6884, -49724, -124694, -124694, -49724, -6884, 1;
1, -17884, -171184, -600424, -900892, -600424, -171184, -17884, 1;
1, -45011, -551396, -2576936, -5412692, -5412692, -2576936, -551396, -45011, 1;
MATHEMATICA
T[n_, k_, q_]:= 1 + (1-q^n)*(1/k)*(Binomial[n-1, k-1]*Binomial[n, k-1] - k);
Table[T[n, k, 2], {n, 12}, {k, n}]//Flatten
PROG
(Sage)
def T(n, k, q): return 1 +(1-q^n)*(1/k)*(binomial(n-1, k-1)*binomial(n, k-1) -k)
flatten([[T(n, k, 2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 09 2021
(Magma)
T:= func< n, k, q | 1 +(1-q^n)*(1/k)*(Binomial(n-1, k-1)*Binomial(n, k-1) -k) >;
[T(n, k, 2): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 09 2021
CROSSREFS
Cf. A000012 (q=1), this sequence (q=2), A174732 (q=3), A174733 (q=4).
Sequence in context: A108477 A176204 A176492 * A342891 A174694 A353952
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 28 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 09 2021
STATUS
approved