login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174728
Triangle read by rows: T(n, m, q) = (1-q^n)*Eulerian(n+1, m) - (1-q^n) + 1, with q = 2.
2
1, 1, 1, 1, -8, 1, 1, -69, -69, 1, 1, -374, -974, -374, 1, 1, -1735, -9330, -9330, -1735, 1, 1, -7496, -74969, -152144, -74969, -7496, 1, 1, -31241, -545083, -1983485, -1983485, -545083, -31241, 1, 1, -127754, -3724784, -22499414, -39828194, -22499414, -3724784, -127754, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -6, -136, -1720, -22128, -317072, -5119616, -92532096, -1854311680, -40834875136, ...}.
FORMULA
T(n, m, q) = (1 - q^n)*Eulerian(n + 1, m) - (1 - q^n) + 1, where q = 2.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -8, 1;
1, -69, -69, 1;
1, -374, -974, -374, 1;
1, -1735, -9330, -9330, -1735, 1;
1, -7496, -74969, -152144, -74969, -7496, 1;
1, -31241, -545083, -1983485, -1983485, -545083, -31241, 1;
MATHEMATICA
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
With[{q = 2}, Table[(1-q^n)*(Eulerian[n+1, m]-1)+1, {n, 0, 10}, {m, 0, n}] ]//Flatten (* G. C. Greubel, Apr 20 2019 *)
PROG
(PARI) q=2; {eulerian(n, k) = sum(j=0, k+1, (-1)^j*binomial(n+1, j)*(k-j+1)^n)};
for(n=0, 10, for(k=0, n, print1((1-q^n)*(eulerian(n+1, k)-1)+1, ", "))) \\ G. C. Greubel, Apr 20 2019
(Magma) q:=2; Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) >; [[(1-q^n)*(Eulerian(n+1, k)-1) +1: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 20 2019
(Sage)
q=2;
def Eulerian(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j+1)^n for j in (0..k+1))
[[(1-q^n)*(Eulerian(n+1, k)-1)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 20 2019
CROSSREFS
Sequence in context: A176642 A172346 A178048 * A015121 A156766 A178046
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 28 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 20 2019
STATUS
approved