login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178046
Triangle t(n, m) = 2*binomial(n,m)^2 -A008292(n+1,m+1)^2 read by rows.
0
1, 1, 1, 1, -8, 1, 1, -103, -103, 1, 1, -644, -4284, -644, 1, 1, -3199, -91004, -91004, -3199, 1, 1, -14328, -1418031, -5836256, -1418031, -14328, 1, 1, -60911, -18428967, -243950711, -243950711, -18428967, -60911, 1, 1, -251876
OFFSET
0,5
COMMENTS
Row sums are A028329(n) - A168562(n+1). - R. J. Mathar, Nov 05 2012
EXAMPLE
1;
1, 1;
1, -8, 1;
1, -103, -103, 1;
1, -644, -4284, -644, 1;
1, -3199, -91004, -91004, -3199, 1;
1, -14328, -1418031, -5836256, -1418031, -14328, 1;
1, -60911, -18428967, -243950711, -243950711, -18428967, -60911, 1;
1, -251876, -213392096, -7785232484, -24395306300, -7785232484, -213392096, -251876, 1;
MATHEMATICA
<< DiscreteMath`Combinatorica`
t[n_, m_] = 2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2;
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, May 18 2010
STATUS
approved