OFFSET
0,1
COMMENTS
Previous name: Inverse Akiyama-Tanigawa algorithm. From a column instead of a row. Bernoulli case A164555/A027642. We start from column 1, 1/2, 1/3, 1/4, 1/5 = A000012/A000027. First row: 1) (unreduced) 1, 1/2, 5/12, 9/24, 251/720 = A002657/A091137 (Cauchy from Bernoulli) (*); 2) (reduced) 1, 1/2, 5/12, 3/8, 251/720 = A002208/A002209 (Stirling and Bernoulli). Unreduced second row: 1/2, 1/6, 1/8, 19/180, 27/288, 863/10080 = A141417(n+1)/a(n).
REFERENCES
P. Curtz, Intégration numérique des systèmes différentiels .. . Note 12, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
FORMULA
a(n) = A091137(n+1)/(n+1).
MATHEMATICA
PROG
(PARI) f(n) = my(r =1); forprime(p=2, n+1, r*=p^(n\(p-1))); r; \\ A091137
a(n) = f(n+1)/(n+1); \\ Michel Marcus, Jun 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Mar 28 2010
EXTENSIONS
Extended up to a(18) by Jean-François Alcover, Aug 14 2012
New name and more terms from Michel Marcus, Jun 30 2019
STATUS
approved