The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174733 Triangle T(n, k, q) = (1-q^n)*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - (1-q^n) + 1, for q = 4, read by rows. 3
 1, 1, 1, 1, -125, 1, 1, -1274, -1274, 1, 1, -9206, -19436, -9206, 1, 1, -57329, -200654, -200654, -57329, 1, 1, -327659, -1703831, -2850641, -1703831, -327659, 1, 1, -1769444, -12779324, -32046614, -32046614, -12779324, -1769444, 1, 1, -9175004, -87817904, -308018024, -462158108, -308018024, -87817904, -9175004, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS From G. C. Greubel, Feb 09 2021: (Start) The triangle coefficients are connected to the Narayana numbers by T(n, k, q) = (1-q^n)*(A001263(n, k) - 1) + 1, for varying q values. The row sums of this class of sequences, for varying q, is given by Sum_{k=1..n} T(n, k, q) = q^n * n + (1 - q^n)*C_{n}, where C_{n} are the Catalan numbers (A000108). (End) LINKS G. C. Greubel, Rows n = 1..100 of the triangle, flattened FORMULA T(n, k, q) = (1-q^n)*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - (1-q^n) + 1, for q = 4. From G. C. Greubel, Feb 09 2021: (Start) T(n, k, 4) = (1-4^n)*(A001263(n,k) - 1) + 1. Sum_{k=1..n} T(n, k, 4) = 4^n * n + (1 - 4^n)*A000108(n). (End) EXAMPLE Triangle begins as: 1; 1, 1; 1, -125, 1; 1, -1274, -1274, 1; 1, -9206, -19436, -9206, 1; 1, -57329, -200654, -200654, -57329, 1; 1, -327659, -1703831, -2850641, -1703831, -327659, 1; 1, -1769444, -12779324, -32046614, -32046614, -12779324, -1769444, 1; MATHEMATICA T[n_, k_, q_]:= 1 + (1-q^n)*(1/k)*(Binomial[n-1, k-1]*Binomial[n, k-1] - k); Table[T[n, k, 4], {n, 12}, {k, n}]//Flatten PROG (Sage) def T(n, k, q): return 1 + (1-q^n)*(1/k)*(binomial(n-1, k-1)*binomial(n, k-1) - k) flatten([[T(n, k, 4) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 09 2021 (Magma) T:= func< n, k, q | 1 +(1-q^n)*(1/k)*(Binomial(n-1, k-1)*Binomial(n, k-1) - k) >; [T(n, k, 4): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 09 2021 CROSSREFS Cf. A000108, A001263. Cf. A000012 (q=1), A174731 (q=2), A174732 (q=3), this sequence (q=4). Sequence in context: A009805 A227393 A005080 * A100579 A298062 A298711 Adjacent sequences: A174730 A174731 A174732 * A174734 A174735 A174736 KEYWORD sign,tabl AUTHOR Roger L. Bagula, Mar 28 2010 EXTENSIONS Edited by G. C. Greubel, Feb 09 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 04:26 EDT 2024. Contains 373468 sequences. (Running on oeis4.)