login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k, q) = (1-q^n)*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - (1-q^n) + 1, for q = 2, read by rows.
3

%I #10 Feb 09 2021 21:40:14

%S 1,1,1,1,-13,1,1,-74,-74,1,1,-278,-588,-278,1,1,-881,-3086,-3086,-881,

%T 1,1,-2539,-13207,-22097,-13207,-2539,1,1,-6884,-49724,-124694,

%U -124694,-49724,-6884,1,1,-17884,-171184,-600424,-900892,-600424,-171184,-17884,1

%N Triangle T(n, k, q) = (1-q^n)*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - (1-q^n) + 1, for q = 2, read by rows.

%C From _G. C. Greubel_, Feb 09 2021: (Start)

%C The triangle coefficients are connected to the Narayana numbers by T(n, k, q) = (1-q^n)*(A001263(n, k) - 1) + 1, for varying q values.

%C The row sums of this class of sequences, for varying q, is given by Sum_{k=1..n} T(n, k, q) = q^n * n + (1 - q^n)*C_{n}, where C_{n} are the Catalan numbers (A000108). (End)

%H G. C. Greubel, <a href="/A174731/b174731.txt">Rows n = 1..100 of the triangle, flattened</a>

%F T(n, k, q) = (1-q^n)*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - (1-q^n) + 1, for q = 2.

%F From _G. C. Greubel_, Feb 09 2021: (Start)

%F T(n, k, 2) = (1-2^n)*(A001263(n,k) - 1) + 1.

%F Sum_{k=1..n} T(n, k, 2) = 2^n * n + (1 - 2^n)*A000108(n). (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, -13, 1;

%e 1, -74, -74, 1;

%e 1, -278, -588, -278, 1;

%e 1, -881, -3086, -3086, -881, 1;

%e 1, -2539, -13207, -22097, -13207, -2539, 1;

%e 1, -6884, -49724, -124694, -124694, -49724, -6884, 1;

%e 1, -17884, -171184, -600424, -900892, -600424, -171184, -17884, 1;

%e 1, -45011, -551396, -2576936, -5412692, -5412692, -2576936, -551396, -45011, 1;

%t T[n_, k_, q_]:= 1 + (1-q^n)*(1/k)*(Binomial[n-1, k-1]*Binomial[n, k-1] - k);

%t Table[T[n, k, 2], {n, 12}, {k, n}]//Flatten

%o (Sage)

%o def T(n,k,q): return 1 +(1-q^n)*(1/k)*(binomial(n-1, k-1)*binomial(n, k-1) -k)

%o flatten([[T(n,k,2) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Feb 09 2021

%o (Magma)

%o T:= func< n,k,q | 1 +(1-q^n)*(1/k)*(Binomial(n-1, k-1)*Binomial(n, k-1) -k) >;

%o [T(n,k,2): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Feb 09 2021

%Y Cf. A000108, A001263.

%Y Cf. A000012 (q=1), this sequence (q=2), A174732 (q=3), A174733 (q=4).

%K sign,tabl

%O 1,5

%A _Roger L. Bagula_, Mar 28 2010

%E Edited by _G. C. Greubel_, Feb 09 2021