login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176207
Permutations of partitions listed in A080577 with partition lengths listed in A176208; the table has shape A058884.
3
1, 2, 1, 3, 1, 2, 1, 2, 3, 1, 4, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 4, 2, 3, 1, 1, 5, 1, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 4, 2, 5, 2, 4, 1, 2, 3, 2, 2, 3, 1, 1, 1, 6, 1, 5, 1, 1, 4, 2, 1, 4, 1, 1, 1, 3, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1
OFFSET
3,2
COMMENTS
The permutations are selected by considering partial sums of A080577:
1
1 2 11
1 2 11 3 21 111
...
then prepending values from A176206 yielding
1
2 11
3 21 12 111
4 31 22 211 13 121 1111
...
Cases appearing in A080577 are excluded from {a(n)}.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..1607 (rows 3..12)
EXAMPLE
Triangle begins:
{{1,2}},
{{1,3}, {1,2,1}},
{{2,3}, {1 4}, {1,3,1}, {1,2,2}, {1,2,1,1}},
Or more concisely:
{12},
{13, 121},
{23, 14, 131, 122, 1211},
{24, 231, 15, 141, 132, 1311, 1221, 12111},
...
PROG
(PARI) \\ here R(n) returns n-th row as vector of vectors.
L(n, k)={vecsort([Vecrev(p) | p<-partitions(k), p[#p] > n-k], , 4)}
R(n)={ concat(vector(n-1, k, [concat([n-k], p) | p<-L(n, k)])) }
{ for(n=3, 6, print(concat(R(n)))) } \\ Andrew Howroyd, Apr 21 2023
CROSSREFS
KEYWORD
nonn,tabf,uned
AUTHOR
Alford Arnold, Apr 12 2010
EXTENSIONS
Offset corrected and a(50) and beyond from Andrew Howroyd, Apr 21 2023
STATUS
approved