login
A176208
An irregular table with shape sequence A058884 measuring the length of ordered partitions defined by A176207.
2
2, 2, 3, 2, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 4, 5, 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 5, 4, 5, 6, 2, 3, 2, 3, 3, 4, 3, 4, 5, 2, 3, 3, 4, 3, 4, 5, 4, 4, 5, 6, 5, 6, 7, 2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 5, 4, 4, 5, 6, 2, 3, 3, 4, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 7, 8
OFFSET
3,1
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..5555 (rows 3..20)
EXAMPLE
A058884 begins -1 0 0 1 2 5 8 15 ..., counting
12
13 121
23 14 131 122 1211
...
so triangle T(n,k) begins:
2;
2, 3;
2, 2, 3, 3, 4;
2, 3, 2, 3, 3, 4, 4, 5;
2, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 5, 4, 5, 6;
...
PROG
(PARI)
L(n, k)={vecsort([Vecrev(p) | p<-partitions(k), p[#p] > n-k], , 4)}
row(n)={ concat(vector(n-1, k, [#p + 1 | p<-L(n, k)])) }
for(n=3, 8, print(row(n))) \\ Andrew Howroyd, Apr 21 2023
CROSSREFS
Cf. A058884 (row lengths), A176206, A176207.
Sequence in context: A237769 A187182 A362816 * A375422 A330623 A153095
KEYWORD
nonn,tabf,uned
AUTHOR
Alford Arnold, Apr 12 2010
EXTENSIONS
Terms a(34) and beyond from Andrew Howroyd, Apr 21 2023
STATUS
approved