

A362816


Lexicographically earliest sequence such that nowhere is a term a(n) contained in an arithmetic progression of length greater than a(n).


3



2, 2, 3, 2, 2, 3, 3, 3, 5, 2, 2, 3, 2, 2, 3, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 5, 2, 2, 3, 2, 2, 5, 5, 3, 3, 2, 2, 3, 2, 2, 5, 3, 3, 5, 3, 5, 5, 3, 3, 5, 5, 3, 5, 5, 5, 6, 5, 3, 5, 5, 6, 5, 3, 3, 3, 5, 3, 5, 5, 5, 3, 3, 3, 5, 5, 5, 6, 5, 5, 3, 2, 2, 5, 2, 2, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Progressions are terms at indices in arithmetic progression and with values which are some arithmetic progression too.
1 is never in the sequence, because if a(n) = 1, then {a(n),a(n+1)} would form an arithmetic progression greater than 1 in length.
Conjecture: only terms in A362815 appear in this sequence. This is true through the first 10^5 terms.
If this is true, then a(A003278) = 2, because the only way to constrain 2 would be {2,2,2}, and A003278 is defined by adding the smallest term which avoids any 3 term arithmetic progressions. If the conjecture is false, arithmetic progressions {4,3,2}, {8,5,2}, etc. may further constrain 2s.


LINKS



EXAMPLE

For n=9 first we check 1 (never in the sequence). If a(9) were 2, {a(1),a(5),a(9)} = {2,2,2} would form an arithmetic progression of length 3 with a minimum value of 2; this is not allowed. Next, if a(9) were 3, {a(6),a(7),a(8),a(9)} = {3,3,3,3} would form an arithmetic progression of length 4 with a minimum value of 3; this is not allowed. Next, if a(9) were 4, {a(5),a(7),a(9)} = {2,3,4} would form an arithmetic progression of length 3 with a minimum value of 2; this is not allowed. Last, a(9) = 5 fits the definition, as no arithmetic progressions p can be made such that length(p) > min (p) and 5 is the least positive integer where this is satisfied, so a(9) = 5.


PROG

(MATLAB) See Links section.


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



