login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = 4 * A008292(n+1, k) - 3, read by rows.
1

%I #7 Sep 08 2022 08:45:52

%S 1,1,1,1,13,1,1,41,41,1,1,101,261,101,1,1,225,1205,1205,225,1,1,477,

%T 4761,9661,4761,477,1,1,985,17169,62473,62473,17169,985,1,1,2005,

%U 58429,352933,624757,352933,58429,2005,1,1,4049,191357,1820765,5241413,5241413,1820765,191357,4049,1

%N Triangle T(n, k) = 4 * A008292(n+1, k) - 3, read by rows.

%C This sequence belongs to the class defined by T(n, m, q) = 2*T(n, m, q-1) - 1. The first few q values gives the sequences: A008292(n+1, k) (q=0), A176200 (q=1), this sequence (q=2).

%C Row sums are: {1, 2, 15, 84, 465, 2862, 20139, 161256, 1451493, 14515170, 159667167, ...}.

%C Former title: A recursive symmetrical triangular sequence based on Eulerian numbers: q=2: T(n, m, q) = 2*T(n, m, q-1) - 1.

%H G. C. Greubel, <a href="/A176204/b176204.txt">Rows n = 0..100 of the triangle, flattened</a>

%F T(n, m, q) = 2*T(n, m, q-1) - 1, with T(n, m, 0) = A008292(n+1, m).

%F From _G. C. Greubel_, Mar 12 2020: (Start)

%F T(n, k, q) = 2^q * A008292(n+1, k) - (2^q - 1).

%F Sum_{k=0..n} T(n, k, q) = (n+1)*( 2^q * n! - 2^q + 1) (row sums). (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 13, 1;

%e 1, 41, 41, 1;

%e 1, 101, 261, 101, 1;

%e 1, 225, 1205, 1205, 225, 1;

%e 1, 477, 4761, 9661, 4761, 477, 1;

%e 1, 985, 17169, 62473, 62473, 17169, 985, 1;

%e 1, 2005, 58429, 352933, 624757, 352933, 58429, 2005, 1;

%e 1, 4049, 191357, 1820765, 5241413, 5241413, 1820765, 191357, 4049, 1;

%p A008292:= (n,k) -> add((-1)^j*binomial(n+1,j)*(k-j+1)^n, j=0..k+1);

%p A176204:= (n,k,q) -> 2^q*( A008292(n+1,k) -1) + 1;

%p seq(seq( A176204(n,k,2), k=0..n), n=0..12); # _G. C. Greubel_, Mar 12 2020

%t Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j,0,k+1}];

%t T[n_, m_, q_]:= 2^q*Eulerian[n+1, m] - 2^q +1;

%t Table[T[n, m, 2], {n,0,12}, {m,0,n}]//Flatten (* modified by _G. C. Greubel_, Mar 12 2020 *)

%o (PARI) Eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n);

%o T(n,k,q) = 2^q*Eulerian(n+1,k) - (2^q - 1); \\ _G. C. Greubel_, Mar 12 2020

%o (Magma) Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;

%o [[4*Eulerian(n+1,k) -3: k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, Mar 12 2020

%o (Sage)

%o def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))

%o def T(n,k,q): return 2^q*Eulerian(n+1,k) - 2^q + 1

%o [[T(n,k,2) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Mar 12 2020

%Y Cf. A007318, A109128, A131061, A168625, A176200.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Apr 11 2010

%E Edited by _G. C. Greubel_, Mar 12 2020