OFFSET
0,5
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..10000
FORMULA
Sum_{k=0..n} T(n, k) = 4*binomial(2*n,n) - 3*(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = ((1 + (-1)^n)/2)*(4*(-1)^(n/2)*binomial(n, n/2) - 3) (alternating sign row sums). - G. C. Greubel, Sep 15 2024
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 13, 1;
1, 33, 33, 1;
1, 61, 141, 61, 1;
1, 97, 397, 397, 97, 1;
1, 141, 897, 1597, 897, 141, 1;
1, 193, 1761, 4897, 4897, 1761, 193, 1;
1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1;
1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1;
1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1;
MATHEMATICA
Table[4*Binomial[n, k]^2-3, {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Dec 21 2016 *)
PROG
(Magma)
A141596:= func< n, k | 4*Binomial(n, k)^2 - 3 >;
[A141596(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
(SageMath)
def A141596(n, k): return 4*binomial(n, k)^2 -3
flatten([[A141596(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Aug 21 2008
STATUS
approved