login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141596
Triangle T(n,k) = 4*binomial(n,k)^2 - 3, read by rows, 0<=k<=n.
2
1, 1, 1, 1, 13, 1, 1, 33, 33, 1, 1, 61, 141, 61, 1, 1, 97, 397, 397, 97, 1, 1, 141, 897, 1597, 897, 141, 1, 1, 193, 1761, 4897, 4897, 1761, 193, 1, 1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1, 1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1, 1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1
OFFSET
0,5
LINKS
FORMULA
Sum_{k=0..n} T(n, k) = 4*binomial(2*n,n) - 3*(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = ((1 + (-1)^n)/2)*(4*(-1)^(n/2)*binomial(n, n/2) - 3) (alternating sign row sums). - G. C. Greubel, Sep 15 2024
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 13, 1;
1, 33, 33, 1;
1, 61, 141, 61, 1;
1, 97, 397, 397, 97, 1;
1, 141, 897, 1597, 897, 141, 1;
1, 193, 1761, 4897, 4897, 1761, 193, 1;
1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1;
1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1;
1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1;
MATHEMATICA
Table[4*Binomial[n, k]^2-3, {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Dec 21 2016 *)
PROG
(Magma)
A141596:= func< n, k | 4*Binomial(n, k)^2 - 3 >;
[A141596(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
(SageMath)
def A141596(n, k): return 4*binomial(n, k)^2 -3
flatten([[A141596(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024
CROSSREFS
Cf. A109128.
Sequence in context: A066834 A010225 A060361 * A108477 A176204 A176492
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved