login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) = 4*binomial(n,k)^2 - 3, read by rows, 0<=k<=n.
2

%I #15 Sep 15 2024 02:11:42

%S 1,1,1,1,13,1,1,33,33,1,1,61,141,61,1,1,97,397,397,97,1,1,141,897,

%T 1597,897,141,1,1,193,1761,4897,4897,1761,193,1,1,253,3133,12541,

%U 19597,12541,3133,253,1,1,321,5181,28221,63501,63501,28221,5181,321,1,1,397,8097,57597,176397,254013,176397,57597,8097,397,1

%N Triangle T(n,k) = 4*binomial(n,k)^2 - 3, read by rows, 0<=k<=n.

%H Harvey P. Dale, <a href="/A141596/b141596.txt">Table of n, a(n) for n = 0..10000</a>

%F Sum_{k=0..n} T(n, k) = 4*binomial(2*n,n) - 3*(n+1) (row sums).

%F Sum_{k=0..n} (-1)^k*T(n, k) = ((1 + (-1)^n)/2)*(4*(-1)^(n/2)*binomial(n, n/2) - 3) (alternating sign row sums). - _G. C. Greubel_, Sep 15 2024

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 13, 1;

%e 1, 33, 33, 1;

%e 1, 61, 141, 61, 1;

%e 1, 97, 397, 397, 97, 1;

%e 1, 141, 897, 1597, 897, 141, 1;

%e 1, 193, 1761, 4897, 4897, 1761, 193, 1;

%e 1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1;

%e 1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1;

%e 1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1;

%t Table[4*Binomial[n,k]^2-3,{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Dec 21 2016 *)

%o (Magma)

%o A141596:= func< n,k | 4*Binomial(n,k)^2 - 3 >;

%o [A141596(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 15 2024

%o (SageMath)

%o def A141596(n,k): return 4*binomial(n,k)^2 -3

%o flatten([[A141596(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Sep 15 2024

%Y Cf. A109128.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_ and _Gary W. Adamson_, Aug 21 2008