login
A141597
Triangle T(n,k) = 2*binomial(n,k)^2 - 1, read by rows, 0<=k<=n.
1
1, 1, 1, 1, 7, 1, 1, 17, 17, 1, 1, 31, 71, 31, 1, 1, 49, 199, 199, 49, 1, 1, 71, 449, 799, 449, 71, 1, 1, 97, 881, 2449, 2449, 881, 97, 1, 1, 127, 1567, 6271, 9799, 6271, 1567, 127, 1, 1, 161, 2591, 14111, 31751, 31751, 14111, 2591, 161, 1, 1, 199, 4049, 28799, 88199, 127007, 88199, 28799, 4049, 199, 1
OFFSET
0,5
FORMULA
Sum_{k=0..n} T(n, k) = A134759(n) = 2*binomial(2*n,n) - (n+1) (row sums).
T(n, n-k) = T(n, k).
Sum_{k=0..n} (-1)^k*T(n, k) = ((1+(-1)^n)/2)*(2*(-1)^(n/2)*binomial(n, n/2) - 1) (alternating sign row sums). - G. C. Greubel, Sep 15 2024
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 17, 17, 1;
1, 31, 71, 31, 1;
1, 49, 199, 199, 49, 1;
1, 71, 449, 799, 449, 71, 1;
1, 97, 881, 2449, 2449, 881, 97, 1;
1, 127, 1567, 6271, 9799, 6271, 1567, 127, 1;
1, 161, 2591, 14111, 31751, 31751, 14111, 2591, 161, 1;
1, 199, 4049, 28799, 88199, 127007, 88199, 28799, 4049, 199, 1;
MATHEMATICA
T[n_, m_, k_, l_]:= (1+l)*Binomial[n, m]^k -l;
Table[T[n, m, 2, 1], {n, 0, 12}, {m, 0, n}]//Flatten
PROG
(Magma)
A141597:= func< n, k | 2*Binomial(n, k)^2 - 1 >;
[A141597(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
(SageMath)
def A141597(n, k): return 2*binomial(n, k)^2 -1
flatten([[A141597(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024
CROSSREFS
Cf. A134759 (row sums), A141596.
Sequence in context: A081580 A082110 A275526 * A372066 A176561 A176284
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved