login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141594
Numbers k such that k, q+k, 2*q+k, 3*q+k, 4*q+k, and 5*q+k are all averages of twin primes, where q is the product of the first 8 primes.
1
6341442, 6837222, 11285508, 15315720, 174710022, 326603400, 434021520, 508246812, 711829818, 1177207878, 1442665452, 1802819172, 1917309882, 2010186978, 2055080892, 2502111192, 2692872672, 2926907538, 3101732970, 3111432660, 3167425578, 3487611162, 3497310852, 3592253772
OFFSET
1,1
COMMENTS
q = 2*3*5*7*11*13*17*19 = 9699690.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..164 (Terms <= 10^11)
EXAMPLE
6341442, q+6341442, 2*q+6341442, 3*q+6341442, 4*q+6341442, and 5*q+6341442 are all averages of twin primes, so 6341442 is a term.
MATHEMATICA
q=9699690; lst={};
Do[If[PrimeQ[n-1]&&PrimeQ[n+1] && PrimeQ[n+q*1-1] && PrimeQ[n+q*1+1] && PrimeQ[n+q*2-1] && PrimeQ[n+q*2+1] && PrimeQ[n+q*3-1] && PrimeQ[n+q*3+1] && PrimeQ[n+q*4-1] && PrimeQ[n+q*4+1] && PrimeQ[n+q*5-1] && PrimeQ[n+q*5+1], Print[n]; AppendTo[lst, n]], {n, 10^6, 10^9}];
lst
mkQ[k_]:=Module[{q=Times@@Prime[Range[8]]}, AllTrue[Flatten[Table[x q+k+{1, -1}, {x, 0, 5}], 1], PrimeQ]]; Select[Range[154*10^5], mkQ] (* The program generates the first 4 terms of the sequence. To generate more, increase the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Apr 09 2023 *)
PROG
(PARI) is(n) = { for(i = 0, 5, if(!isprime(n + i*9699690 - 1), return(0) ); if(!isprime(n + i*9699690 + 1), return(0) ); ); 1 } \\ David A. Corneth, Feb 24 2021
CROSSREFS
Sequence in context: A147531 A018895 A178135 * A307019 A234758 A295481
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Edited by Jon E. Schoenfield, Feb 24 2021
STATUS
approved