login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) = A176492(n,k) + A008292(n+1,k+1) - 1 read along rows 0<=k<=n.
1

%I #10 Jun 17 2015 04:04:43

%S 1,1,1,1,13,1,1,45,45,1,1,129,365,129,1,1,353,2293,2293,353,1,1,965,

%T 12937,28397,12937,965,1,1,2677,69261,290993,290993,69261,2677,1,1,

%U 7561,360853,2661809,4987461,2661809,360853,7561,1,1,21705,1852053,22618437

%N Triangle T(n,k) = A176492(n,k) + A008292(n+1,k+1) - 1 read along rows 0<=k<=n.

%C Row sums are 1, 2, 15, 92, 625, 5294, 56203, 725864, 11047909, 193052642, 3795725791,....

%e 1;

%e 1, 1;

%e 1, 13, 1;

%e 1, 45, 45, 1;

%e 1, 129, 365, 129, 1;

%e 1, 353, 2293, 2293, 353, 1;

%e 1, 965, 12937, 28397, 12937, 965, 1;

%e 1, 2677, 69261, 290993, 290993, 69261, 2677, 1;

%e 1, 7561, 360853, 2661809, 4987461, 2661809, 360853, 7561, 1;

%e , 21705, 1852053, 22618437, 72034125, 72034125, 22618437, 1852053, 21705, 1;

%e 1, 63117, 9421457, 182707997, 926399717, 1558541213, 926399717, 182707997, 9421457, 63117, 1;

%p A176492 := proc(n,k)

%p A176491(n,k)+A008292(n+1,k+1)-1 ;

%p end proc: # _R. J. Mathar_, Jun 16 2015

%t (*A060187*)

%t p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];

%t f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];

%t << DiscreteMath`Combinatorica`;

%t t[n_, m_, 0] := Binomial[n, m];

%t t[n_, m_, 1] := Eulerian[1 + n, m];

%t t[n_, m_, 2] := f[n, m];

%t t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;

%t Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]

%Y Cf. A007318, A008292, A060187, A176487.

%K nonn,tabl,easy

%O 0,5

%A _Roger L. Bagula_, Apr 19 2010