login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008958
Triangle of central factorial numbers 4^k T(2n+1, 2n+1-2k).
10
1, 1, 1, 1, 10, 1, 1, 35, 91, 1, 1, 84, 966, 820, 1, 1, 165, 5082, 24970, 7381, 1, 1, 286, 18447, 273988, 631631, 66430, 1, 1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1, 1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1
OFFSET
0,5
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
LINKS
Robert James Purser, Mobius Net Cubed-Sphere Gnomonic Grids, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Protection, 2018.
FORMULA
G.f. of i-th right-hand column is x/Product_{j=1..i+1} (1 - (2j-1)^2*x).
EXAMPLE
From Wesley Transue, Jan 21 2012: (Start)
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 35, 91, 1;
1, 84, 966, 820, 1;
1, 165, 5082, 24970, 7381, 1;
1, 286, 18447, 273988, 631631, 66430, 1;
1, 455, 53053, 1768195, 14057043, 15857205, 597871, 1;
1, 680, 129948, 8187608, 157280838, 704652312, 397027996, 5380840, 1;
(End)
MATHEMATICA
Flatten[Table[Sum[(-1)^(q+1) 4^(p-n) (2p+2q-2n-1)^(2n+1)/((2n+1-2p-q)! q!), {q, 0, n-p}], {n, 0, 8}, {p, 0, n}]] (* Wesley Transue, Jan 21 2012 *)
CROSSREFS
Columns include A000447. Right-hand columns include A002452, A002453.
Sequence in context: A173047 A173045 A176491 * A168524 A157277 A157629
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from Vladeta Jovovic, Apr 16 2000
STATUS
approved