login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190088
Triangle of binomial coefficients binomial(3*n-k+1,3*n-3*k+1).
4
1, 1, 3, 1, 15, 5, 1, 36, 70, 7, 1, 66, 330, 210, 9, 1, 105, 1001, 1716, 495, 11, 1, 153, 2380, 8008, 6435, 1001, 13, 1, 210, 4845, 27132, 43758, 19448, 1820, 15, 1, 276, 8855, 74613, 203490, 184756, 50388, 3060, 17, 1, 351, 14950, 177100, 735471, 1144066, 646646, 116280, 4845, 19
OFFSET
0,3
COMMENTS
Row sums = A190089.
Diagonal sums = A190090.
EXAMPLE
Triangle begins:
1
1, 3
1, 15, 5
1, 36, 70, 7
1, 66, 330, 210, 9
1, 105, 1001, 1716, 495, 11
1, 153, 2380, 8008, 6435, 1001, 13
1, 210, 4845, 27132, 43758, 19448, 1820, 15
1, 276, 8855, 74613, 203490, 184756, 50388, 3060, 17
MATHEMATICA
Flatten[Table[Binomial[3n - k + 1, 3n - 3k + 1], {n, 0, 8}, {k, 0, n}]]
PROG
(Maxima) create_list(binomial(3*n-k+1, 3*n-3*k+1), n, 0, 12, k, 0, n);
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(3*n-k+1, 3*n-3*k+1), ", "))) \\ G. C. Greubel, Mar 04 2018
(Magma) /* As triangle */ [[Binomial(3*n-k+1, 3*n-3*k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 04 2018
CROSSREFS
Sequence in context: A324428 A131440 A269950 * A119301 A293157 A121335
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, May 04 2011
STATUS
approved