login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190089
Row sums of the triangular matrix A190088.
3
1, 4, 21, 114, 616, 3329, 17991, 97229, 525456, 2839729, 15346786, 82938844, 448227521, 2422362079, 13091204281, 70748973084, 382349636061, 2066337330754, 11167134898976, 60350698792449, 326154101090951, 1762639037938629, 9525854090667496, 51480702630305689, 278217860370802066
OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1350 (terms 0..136 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..n} binomial(3*n-k+1,3*n-3*k+1).
G.f.: (1-x-x^2)/(1-5*x-2*x^2-x^3).
a(n) = 5*a(n-1)+2*a(n-2)+a(n-3) and a(0)=1, a(1)=4, a(2)=21. - Harvey P. Dale, Sep 18 2013
MATHEMATICA
Table[Sum[Binomial[3n - k + 1, 3n - 3k + 1], {k, 0, n}], {n, 0, 12}]
LinearRecurrence[{5, 2, 1}, {1, 4, 21}, 30] (* Harvey P. Dale, Sep 18 2013 *)
PROG
(Maxima) makelist(sum(binomial(3*n-k+1, 3*n-3*k+1), k, 0, n), n, 0, 24);
(PARI) Vec((1-x-x^2)/(1-5*x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Jun 30 2011
(Magma) [(&+[Binomial(3*n-k+1, 3*n-3*k+1): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 04 2018
CROSSREFS
Sequence in context: A027909 A127111 A270787 * A349300 A240436 A255139
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, May 04 2011
STATUS
approved