login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190086
a(n) = n + [n*r/s] + [n*t/s]; r=1, s=sin(1/2), t=cos(1/2).
3
4, 9, 14, 19, 24, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 146, 151, 156, 161, 166, 172, 176, 181, 186, 191, 196, 201, 205, 210, 215, 220, 225, 231, 235, 240, 245, 250, 255, 260, 264, 269, 274, 279, 284, 289, 294, 299, 304, 309, 314, 318, 323, 328, 333, 338, 344, 348
OFFSET
1,1
COMMENTS
See A190085.
LINKS
FORMULA
A190085: f(n) = n + [n*sin(1/2)] + [n*cos(1/2)].
A190086: g(n) = n + [n*csc(1/2)] + [n*cot(1/2)], this sequence.
A190087: h(n) = n + [n*sec(1/2)] + [n*tan(1/2)].
MATHEMATICA
r=1; s=Sin[1/2]; t=Cos[1/2];
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (* A190085 *)
Table[g[n], {n, 1, 120}] (* A190086 *)
Table[h[n], {n, 1, 120}] (* A190087 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n/sin(1/2)) + floor(n/tan(1/2)), ", ")) \\ G. C. Greubel, Mar 04 2018
(Magma) [n + Floor(n/Sin(1/2)) + Floor(n/Tan(1/2)): n in [1..100]]; // G. C. Greubel, Mar 04 2018
CROSSREFS
Sequence in context: A313112 A313113 A197878 * A313114 A313115 A120433
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 04 2011
STATUS
approved